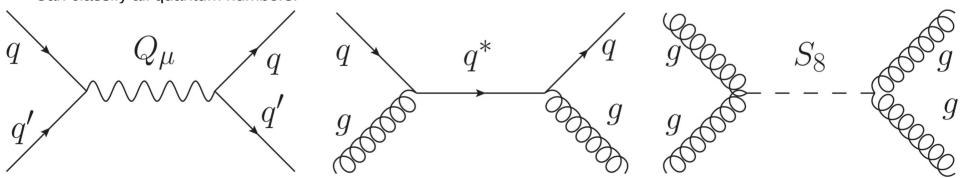

A Guide to Diagnosing Colored Resonances at Hadron Colliders


Ian Lewis (University of Kansas) Han, IML, H. Liu, Z. Liu, X. Wang JHEP 08 (2023) 173

Mitchell Conference May 23-26, 2024

Why dijets?

- LHC is essentially a QCD machine.
- Most initial states are charged under QCD.
- Dijet resonances are among the most natural objects to search for.
 - If it's produced by a pair of partons, it can decay back into the partons.
- Finite number of possible initial states (ignoring EW only particles):
 - Quarks, gluons, and anti-quarks.
 - Can classify all quantum numbers.

Mitchell Conference May 23-26, 2024

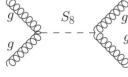
Dijet Resonances

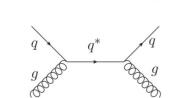
- Know the initial states:
 - Can characterize quantum numbers of possible dijet resonances.
 - Q: Left-handed doublets
 - U,D: Right-handed singlets

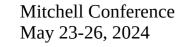
- A: gluons

			1	1	1	
initial state	J	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	$ Q_e $	B
QQ	0	$\overline{f 3}\oplus{f 6}$	$oldsymbol{1} \oplus oldsymbol{3}$	$\frac{1}{3}$	$\frac{4}{3}, \frac{2}{3}, \frac{1}{3}$	$\frac{2}{3}$
QU	1	$\overline{f 3}\oplus {f 6}$	2	$\frac{\frac{1}{3}}{\frac{5}{6}}$	$\frac{4}{3}, \frac{1}{3}$	$\frac{2}{3}$
QD	1	$\overline{f 3}\oplus {f 6}$	2	$-\frac{1}{6}$	$\frac{\frac{4}{3},\frac{1}{3}}{\frac{2}{3},\frac{1}{3}}$	$\frac{2}{3}$
UU	0	$\overline{f 3}\oplus {f 6}$	1	$\frac{4}{3}$	$\frac{4}{3}$	$\frac{2}{3}$
DD	0	$\overline{f 3}\oplus{f 6}$	1	$-\frac{2}{3}$	$\frac{2}{3}$	$\frac{2}{3}$
UD	0	$\overline{f 3}\oplus{f 6}$	1	$\frac{1}{3}$	$\frac{1}{3}$	$ \begin{array}{c} 2\\ 3\\ 2\\ 2\\ 3\\ 2\\ 2\\ 3\\ 2\\ 3\\ 2\\ 3\\ 2\\ 3\\ 2\\ 2\\ 3\\ 2\\ 2\\ 3\\ 2\\ 2\\ 3\\ 2\\ 2\\ 3\\ 2\\ 2\\ 3\\ 2\\ 2\\ 3\\ 2\\ 2\\ 3\\ 2\\ 2\\ 3\\ 2\\ 2\\ 2\\ 3\\ 2\\ 2\\ 2\\ 3\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\$
QA	$\frac{1}{2}, \frac{3}{2}$	${f 3}\oplusar {f 6}\oplus{f 15}$	2	$\frac{1}{6}$	$\frac{2}{3}, \frac{1}{3}$	$\frac{1}{3}$
UA	$ \frac{\frac{1}{2}, \frac{3}{2}}{\frac{1}{2}, \frac{3}{2}} $ $ \frac{\frac{1}{2}, \frac{3}{2}}{\frac{1}{2}, \frac{3}{2}} $	${f 3}\oplusar{f 6}\oplus{f 15}$	1	$ \frac{\frac{1}{6}}{\frac{2}{3}} \frac{1}{3} $	$\frac{2}{3}$	$\frac{\frac{1}{3}}{\frac{1}{3}}$
DA	$\frac{1}{2}, \frac{3}{2}$	${f 3}\oplusar{f 6}\oplus{f 15}$	1	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$
AA	0,1,2	$1 \oplus 8 \oplus 8 \oplus 10 \oplus \bar{10} \oplus 27$	1	0	0	0
$Q\bar{Q}$	1	$1\oplus8$	$1 \oplus 3$	0	1, 0	0
$Q\bar{U}$	0	$1\oplus8$	2	$-\frac{1}{2}$	1, 0	0
$Q\bar{D}$	0	$oldsymbol{1} \oplus oldsymbol{8}$	2	$\frac{1}{2}$	1, 0	0
$U\bar{U}, \ D\bar{D}$	1	$oldsymbol{1} \oplus oldsymbol{8}$	1	0	0	0
$U\bar{D}$	1	$oldsymbol{1}\oplusoldsymbol{8}$	1	1	1	0

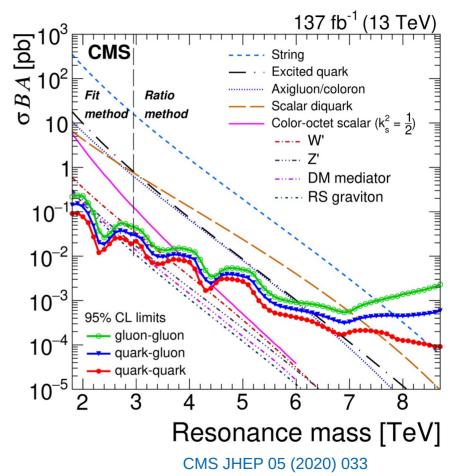
Han, IML, Liu, JHEP12 (2010) 085

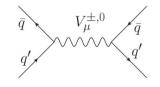

Mitchell Conference May 23-26, 2024

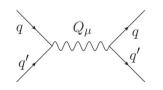

Dijet Resonances

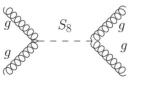

- Many searches at the LHC for such resonances.
- No discovery yet, but what if there is one?
- Need to experimentally classify the dijet resonance.
 - Type of jets are hard to distinguish and the initial state is unknown.
 - Which partons does it couple to?
 - What is its spin?
 - What is its color representation?

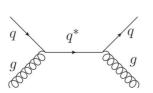
 $V_{\mu}^{\pm,0}$


 Q_{μ}

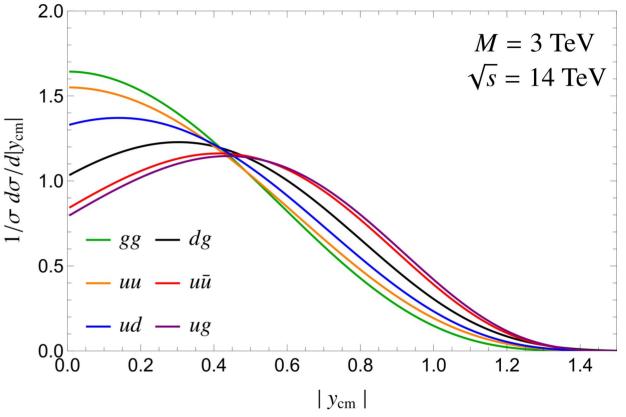



Ian Lewis (University of Kansas)




- Rapidity distribution of resonance has information about initial state parton.
 - Gluons, sea, and anti-quarks tend to carry small amounts of the proton momentum
 - Valence quarks carry tend to carry large fractions of proton momentum
 - Hence, centrality of rapidity distribution depends on initial state partons.
- Assuming decays into same states.
 - Can try to tag quark vs. gluon vs. anti-quark jets.
 - Heard some about jet charge from Zhongtian (Cosmos) Dong on Monday.

Cogan et al, JHEP02 (2015) 118; Kmosike, Metodiev, Schwartz JHEP 01 (2017) 110; Kasieczka et al SciPost 6 (2019) 069; Field, Feynman, NPB 136 (1978); etc etc



Couplings to Particles

Han, IML, Liu, Liu, Wang JHEP08 (2023) 173

Mitchell Conference May 23-26, 2024

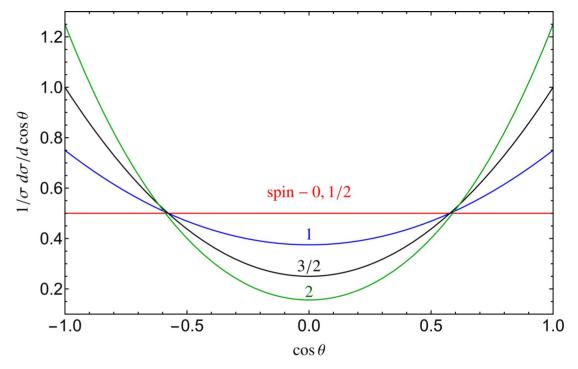
Han, IML, Liu, Liu, Wang JHEP08 (2023) 173

Spin

- Spin correlations.
 - Depending on chiral couplings, get different spin correlations.
 - Can measure with angular distributions.
- On-shell angular distributions in resonance rest frame.
 - Each higher spin gains new power of polar angle
 - Assuming jets cannot be distinguished, will symmetrize.
 - Cannot distinguish chiral couplings, but can (mostly) distinguish different spins.

$$\text{Spin 1/2:} \quad \frac{d\hat{\sigma}_{1/2}}{d\cos\theta} = \frac{1}{2}\hat{\sigma}_{1/2}(\hat{s} = M^2)\left(1 + \frac{|\lambda_{i,L}|^2 - |\lambda_{i,R}|^2}{|\lambda_{i,L}|^2 + |\lambda_{i,R}|^2}\frac{|\lambda_{f,L}|^2 - |\lambda_{f,R}|^2}{|\lambda_{f,L}|^2 + |\lambda_{f,R}|^2}\cos\theta\right)$$

Spin 1:
$$\left. \frac{d\hat{\sigma}_1}{d\cos\theta} \right|_{g_L=g_R} = \frac{3}{8}\hat{\sigma}_1(\hat{s})(1+\cos^2\theta)$$


Spin 3/2:
$$\frac{d\hat{\sigma}_{3/2}}{d\cos\theta} = \frac{1}{2}\hat{\sigma}_{3/2}(\hat{s} = M^2) \left[1 + 3\cos^2\theta + \frac{|\lambda_{i,L}|^2 - |\lambda_{i,R}|^2}{|\lambda_{i,L}|^2 + |\lambda_{i,R}|^2} \frac{|\lambda_{f,L}|^2 - |\lambda_{f,R}|^2}{|\lambda_{f,L}|^2 + |\lambda_{f,R}|^2} \cos\theta \left(3 + \cos^2\theta\right) \right]$$

Spin 2:
$$\frac{d\hat{\sigma}_2}{d\cos\theta} = \frac{5}{32}\sigma_2(\hat{s})\left(1 + 6\cos^2\theta + \cos^4\theta\right)$$

Mitchell Conference May 23-26, 2024

Angular Distributions

- Assuming we cannot distinguish final state jets, symmetrize distributions.
- Most resonances distinguishable.
 - Spin-0 and Spin-1/2 not distinguishable after symmetrizing.

Han, IML, Liu, Liu, Wang JHEP08 (2023) 173

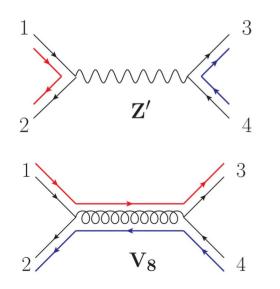
Mitchell Conference May 23-26, 2024

Color Charge

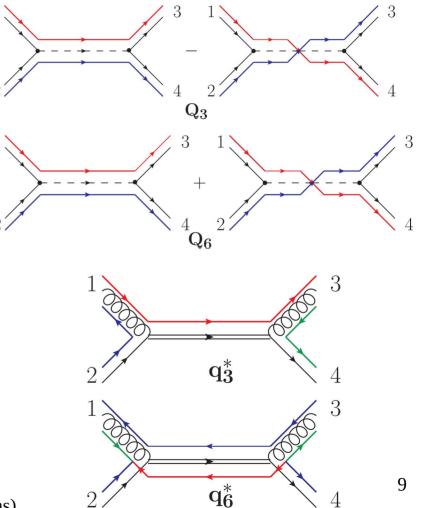
•	Many resonances only differ
	by color representation.

- Same spin.
- Same coupling to partons.
- Same charge.
- How do we tell them apart?

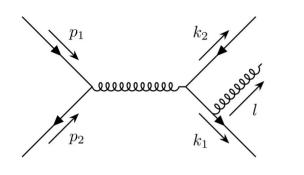
initial state	J	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	$ Q_e $	B
QQ	0	$\overline{f 3}\oplus f 6$	$1\oplus3$	$\frac{1}{3}$	$\frac{4}{3}, \frac{2}{3}, \frac{1}{3}$	$\frac{2}{3}$
QU	1	${f \overline{3}}\oplus {f 6}$	2	$\frac{\overline{3}}{5}$	$\frac{\frac{4}{3},\frac{1}{3}}{\frac{2}{3},\frac{1}{3}}$	$ \begin{array}{c} 2 \\ -3 \\ -3 \\ -2 \\ -3 \\ -3 \\ -2 \\ -3 \\ -3 \\ -2 \\ -3 \\ -2 \\ -3 \\ -3 \\ -2 \\ -3 \\ -3 \\ -2 \\ -3 \\ -3 \\ -2 \\ -3 \\ -3 \\ -2 \\ -3 \\ -3 \\ -2 \\ -3 \\ -3 \\ -2 \\ -3 \\ -3 \\ -2 \\ -3 \\ -3 \\ -2 \\ -3 \\ -3 \\ -2 \\ -3 \\ -3 \\ -2 \\ -3 \\ -3 \\ -2 \\ -3 \\ -3 \\ -2 \\ -3 \\ -3 \\ -2 \\ -3 \\ -3 \\ -2 \\ -3 \\ -3 \\ -2 \\ -3 \\ -3 \\ -2 \\ -3 \\ -3 \\ -2 \\ -3 \\ -3 \\ -3 \\ -2 \\ -3 \\ -3 \\ -3 \\ -2 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3$
QD	1	$\overline{f 3}\oplus {f 6}$	2	$-\frac{1}{6}$	$\frac{2}{3}, \frac{1}{3}$	$\frac{2}{3}$
UU	0	$\overline{f 3}\oplus {f 6}$	1	$\frac{4}{3}$	$\frac{4}{3}$	$\frac{2}{3}$
DD	0	$\overline{f 3}\oplus {f 6}$	1	$-\frac{2}{3}$	$\frac{\frac{4}{3}}{\frac{2}{3}}$	$\frac{2}{3}$
UD	0	$\overline{f 3}\oplus{f 6}$	1	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{2}{3}$
QA	$\frac{1}{2}, \frac{3}{2}$	${f 3}\oplusar {f 6}\oplus{f 15}$	2		$\frac{\frac{2}{3},\frac{1}{3}}{\frac{2}{3}}$	$\frac{1}{3}$
UA	$ \frac{\frac{1}{2}, \frac{3}{2}}{\frac{1}{2}, \frac{3}{2}} $	${f 3}\oplusar {f ar 6}\oplus{f 15}$	1	$\frac{\frac{1}{6}}{\frac{2}{3}}$	$\frac{2}{3}$	$\frac{1}{3}$
DA	$\frac{1}{2}, \frac{3}{2}$	${f 3}\oplusar{f 6}\oplus{f 15}$	1	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$
AA	0, 1, 2	$1 \oplus 8 \oplus 8 \oplus 10 \oplus \bar{10} \oplus 27$	1	0	0	0
$Q\bar{Q}$	1	${f 1}\oplus {f 8}$	$1 \oplus 3$	0	1, 0	0
$Q\bar{U}$	0	$1\oplus8$	2	$-\frac{1}{2}$	1, 0	0
$Q\bar{D}$	0	$1\oplus8$	2	$\frac{1}{2}$	1, 0	0
$U\bar{U}, \ D\bar{D}$	1	$1\oplus8$	1	0	0	0
$U\bar{D}$	1	$oldsymbol{1}\oplusoldsymbol{8}$	1	1	1	0


Han, IML, Liu, JHEP12 (2010) 085

Mitchell Conference May 23-26, 2024


Color Charge

Han, IML, Liu, Liu, Wang JHEP08 (2023) 173


- Several resonances have same quantum numbers except color.
 - Need to distinguish
- Two-to-two not sufficient and insensitive to color.
- Look at additional radiation of a gluon.
 - Can be sensitive to interference patterns between different color connected lines.
 - Different resonance have different color connections.

Mitchell Conference May 23-26, 2024

Soft/Collinear Radiation

$$[k_i k_j] = \frac{k_i \cdot k_j}{l \cdot k_i \, l \cdot k_j}$$

Quarked Gluon:

Quark-Antiquark:

- Take soft and collinear limit of radiated GI gluon.
- Different elements are sensitive to different radiation patterns.
- Studied for octet vs. singlet previously. Gluon-Ellis, Khoze, Stirling, Z.Phys. C75 (1997) 287 Gluon:

Mitchell Conference May 23-26, 2024

Han, IML, Liu, Wang JHEP08 (2023) 173

$$\frac{|\mathcal{M}_{2 \to V_1 \to 3}|^2}{|\mathcal{M}_{2 \to V_1 \to 2}|^2} \propto g_s^2 \left\{ \left(1 - \frac{2}{N_C^2}\right) ([p_1 k_1] + [p_2 k_2]) + \frac{2}{N_C^2} ([p_1 k_2] + [p_2 k_1]) - \frac{1}{N_C^2} ([p_1 p_2] + [k_1 k_2]) \right\}$$

$$\begin{array}{l} \text{Quark-} \\ \text{Quark-} \\ \text{Quark-} \\ \text{Quark-} \\ \frac{|\mathcal{M}_{2 \to Q_3 \to 3}|^2}{|\mathcal{M}_{2 \to Q_3 \to 2}|^2} \propto g_s^2 \left\{ [p_1k_1] + [p_2k_2] + [p_1k_2] + [p_2k_1] + 2\left([p_1p_2] + [k_1k_2]\right) \right\} \\ \frac{|\mathcal{M}_{2 \to Q_6 \to 3}|^2}{|\mathcal{M}_{2 \to Q_6 \to 2}|^2} \propto g_s^2 \left\{ [p_1k_1] + [p_2k_2] + [p_1k_2] + [p_2k_1] - \frac{2}{5}\left([p_1p_2] + [k_1k_2]\right) \right\} \end{array}$$

$$\frac{|\mathcal{M}_{2\to Q_3^*\to 3}|^2}{|\mathcal{M}_{2\to Q_3^*\to 2}|^2} \propto g_s^2 \left\{ [p_1k_1] + \frac{8}{9} \left([p_2p_1] + [k_2k_1] \right) - \frac{1}{9} \left([p_2k_1] + [k_2p_1] \right) + \frac{1}{81} [p_2k_2] \right\}$$
$$\frac{|\mathcal{M}_{2\to Q_6^*\to 3}|^2}{|\mathcal{M}_{2\to Q_6^*\to 2}|^2} \propto g_s^2 \left\{ [p_1k_1] + \frac{1}{3} \left([p_2k_1] + [k_2p_1] \right) + \frac{4}{15} \left([p_2p_1] + [k_2k_1] \right) + \frac{1}{9} [p_2k_2] \right\}$$

$$\frac{|\mathcal{M}_{2\to S_8\to 3}|^2}{|\mathcal{M}_{2\to S_8\to 2}|^2} \propto g_s^2 \left\{ [p_1p_2] + [k_1k_2] + \frac{1}{2} \left([p_1k_1] + [p_2k_1] + [p_1k_2] + [p_2k_2] \right) \right\}$$

Ian Lewis (University of Kansas) 10

Cross Section Scaling

- Additional radiation scaling.
 - Radiation of gluon is sensitive to color structure at vertices.
 Englert, et al PRD83 (2011) 095009, JHEP02 (2012) 030; Gerwick, Plehn, Schumann PRL108 (2012) 032003; etc.
 - Ratio of 3-jet to 2-jet rates contain information about this.
 - In general, can take ratio of n+1 jets to njets to understand how radiation of different processes scale.

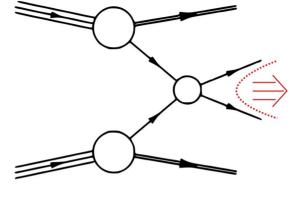
$$R_{(n+1)/n} = \frac{\sigma_{2 \to n+1}}{\sigma_{2 \to n}}$$

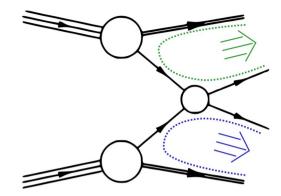
Mitchell Conference May 23-26, 2024

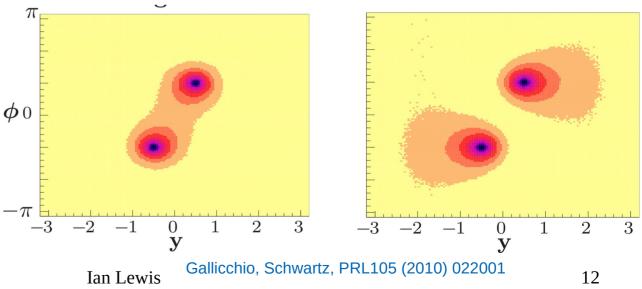
Table 2: Ratios of $2 \rightarrow 3$ resonant production cross-section over $2 \rightarrow 2$ processes at parton level with $p_T^j > 200$ GeV, $|\eta_j| < 3.0$, and $\Delta R_{jj} > 0.4$ at the 14 TeV LHC. The mass of all color resonances is set to be 3 TeV and the width is set to be 30 GeV.

Initial	Color	Spin	Type	$R_{3/2}$
	3	0	D_3	0.41
		1	$\begin{array}{c} E_{3}^{\mu} \\ D_{3}^{\mu} \\ U_{3}^{\mu} \end{array}$	0.41
			D_3^{μ}	0.40
			U_3^{μ}	0.39
$3\otimes 3$	6	0	E_6	0.29
3 & 3			D_6	0.29
			U_6	0.28
		1	E_6^{μ}	0.29
			D_6^{μ}	0.28
			$\begin{array}{c} D_6^{\mu} \\ D_6^{\mu} \\ U_6^{\mu} \end{array}$	0.27
$3\otimes 8$	3	$\frac{1}{2}$	U_3^*	0.61
			D_3^*	0.59
$8\otimes 8$	85	0	S_8	0.69
		2	T_8	0.70
$3\otimes ar{3}$	8.	1	V_8	0.27
ა⊗ა	8_A		V_8^{\pm}	0.26

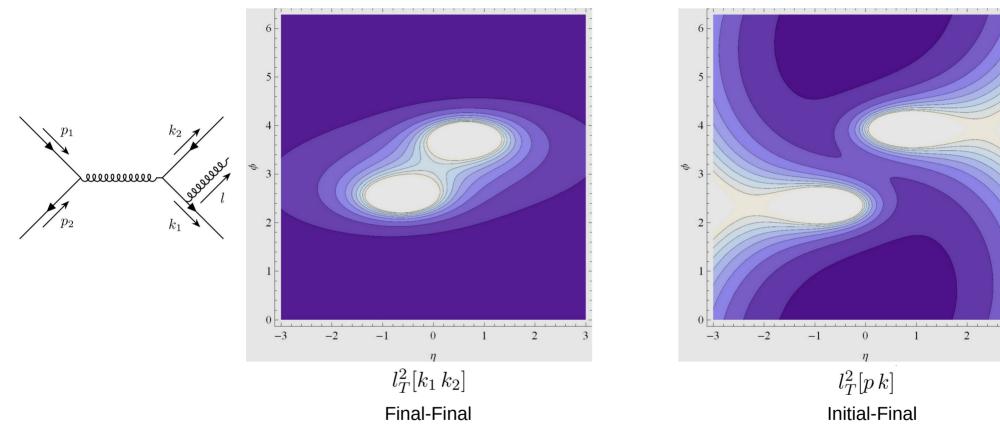
Additional Color Sensitive Observables


(University of Kansas)

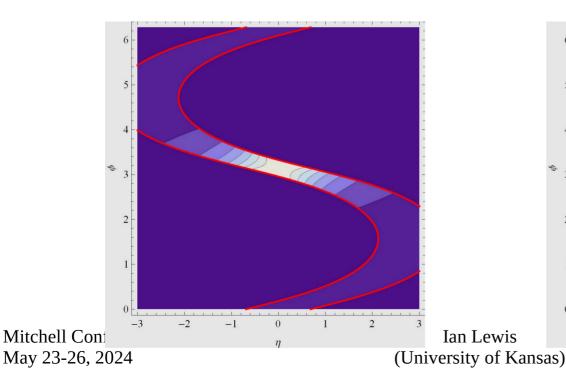

- Radiation pattern depends on color of resonance.
 - Has also been used to try to separate signal from Hook, eta al JHEP04(2011) 007; backgrounds. Kim. et al JHEP09 (2019) 047: Cakroborty et al, JHEP19 (2020) 135;


etc etc

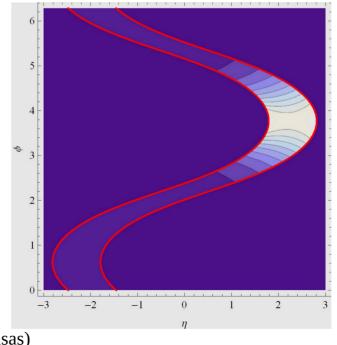
- Most work focused on Ellis et al PLB154 (1985) 435; singlets vs. octets.
- Past analysis often boosted the resonance.
 - Decay products closer together.
 - Radiation squeezed between the partons.
- Want to move beyond.
 - Saw radiation patterns depended on initial state and resonance color representations.
 - Look at resonance in twoto-two process without boosting.


Mitchell Conference May 23-26, 2024

Measuring Radiation Patterns

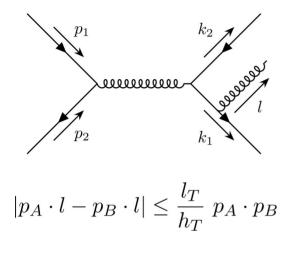


- Radiation between particles that are color connected.
- Create observable sensitive to regions where radiation is expected to overlap.


Mitchell Conference May 23-26, 2024 Ian Lewis (University of Kansas) Han, IML, Liu, Liu, Wang JHEP08 (2023) 173

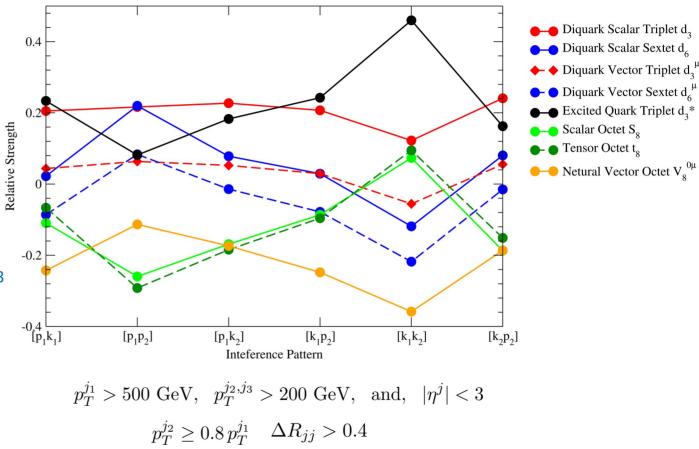
Measuring Radiation Patterns

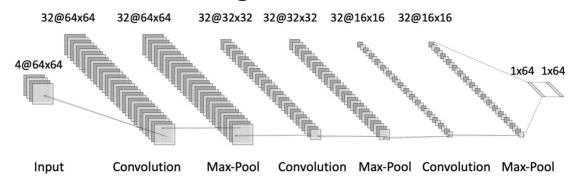
- Recall: each different resonance had a different combination of radiation patterns.
- Factor: $[p_A p_B] = \frac{p_A \cdot p_B}{p_A \cdot l p_B \cdot l} \left(\frac{1}{p_B \cdot l} \frac{1}{p_A \cdot l} \right)$
 - Parenthesis has universal soft and collinear behaviour.
- Cut on pre-factor (l_T is gluon p_T , h_T scalar sum of jet p_T):



$$\frac{p_A \cdot p_B}{|p_A \cdot l - p_B \cdot l|} \ge \frac{h_T}{l_T}$$

Han, IML, Liu, Liu, Wang JHEP08 (2023) 173


Measuring Radiation Patterns


Han, IML, Liu, Liu, Wang JHEP08 (2023) 173

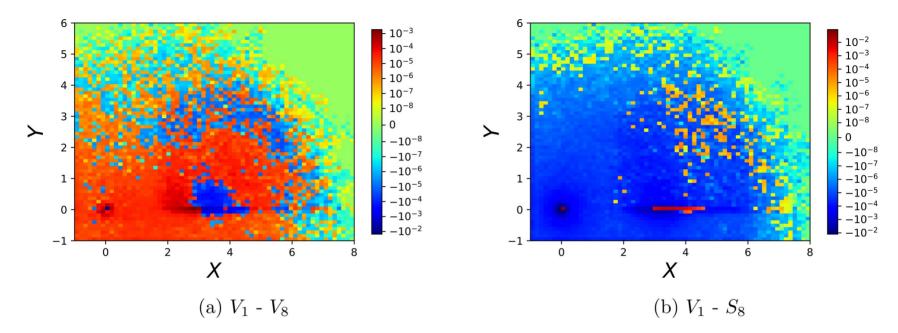
- Relative strength of different radiation patterns depend on color representation.
 - When spin and charge held constant, still have a difference.

Mitchell Conference May 23-26, 2024

Jet Images/ML

- All previous analysis parton level.
- What if we include showering and hadronization?
- Use machine learning.
 - Create three jet events.

 $p \ p \to R(j) + \text{remnants} \to jjj + \text{remnants}$

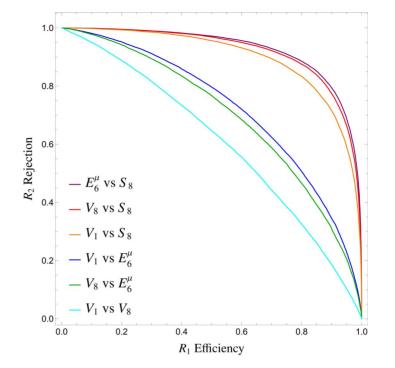

- Generator level cuts:

 $p_T^{j_1} > 600 \text{ GeV}, \quad p_T^{j_2} > 500 \text{ GeV}, \quad p_T^{j_3} > 100 \text{ GeV}, \text{ and } \mid \eta_j \mid < 3.$

- Run through Pythia8 for parton showering and hadronization.
- Cluster jets using anti-kT algorithm with R=0.4
- Include all jets with $p_T^j > 100 \text{ GeV}$ and $|\eta_j| < 3$

Mitchell Conference May 23-26, 2024

Pre-Processing

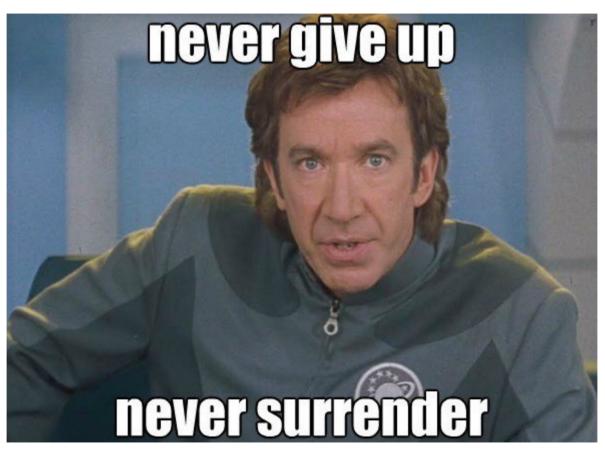

- · Consider three hardest jets.
 - Jet that is furthest away from other two is out of origin.
 - From the two remaining, hardest is along X-axis
 - Third jet flipped to first quadrant.

Mitchell Conference May 23-26, 2024 Han, IML, Liu, Liu, Wang JHEP08 (2023) 173

Results

- Used a Convolutional Neural Network.
 - Trained to distinguish different resonances.
- Considered four input channels:
 - Transverse momentum of positively charged particles
 - Transverse momentum of negatively charged particles
 - Transverse momentum of neutral particles
 - Charged-particle multiplicity

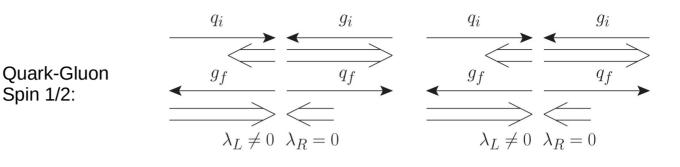
Han, IML, Liu, Liu, Wang JHEP08 (2023) 173

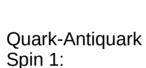

$\begin{array}{ c c c c }\hline R_2 & \text{efficiency (\%)} \\ \text{at 50\% } R_1 & \text{acceptance} \end{array}$	$R_2:V_1\ (u\bar{u})$	$R_2:V_8~(u\bar{u})$	$R_2: E_6^{\mu} \ (uu)$	$R_2:S_8\ (gg)$
$R_1: V_1 \ (u\bar{u})$	50%	35%	20%	4.4%
$R_1: V_8 \ (u\bar{u})$	35%	50%	23%	3.1%
$R_1: E_6^\mu \ (uu)$	20%	23%	50%	2.8%
$R_1:S_8 \ (gg)$	2.8%	1.8%	1.4%	50%

Mitchell Conference May 23-26, 2024

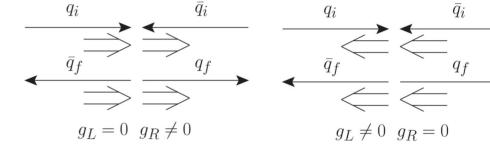
Conclusions

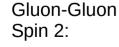
- Hadron colliders are QCD machines:
 - (Most) initial states are colored partons.
- Dijet resonances are the most natural things to search for.
- Categorized the possible quantum numbers of the dijet resonances.
- Gave a roadmap for measuring properties of dijets.
 - Coupling to partons: rapidity distributions/tagging light jets.
 - Spin: Angular distributions.
 - Color representation:
 - Ratio of cross section of process with additional raditiation to base resonance process.
 - Developed an observable sensitive to different radiation patterns beyond singlet vs. octet.
 - Looked at ability to distinguish via machine learning techniques

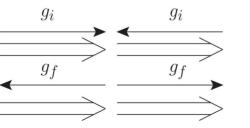

Thank You

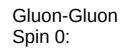


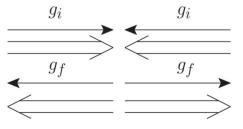
Mitchell Conference May 23-26, 2024


Spin


- Spin correlations.
 - Depending on chiral couplings, get different spin correlations.
 - Can measure with _ angular distributions.






Spin 1/2:

Mitchell Conference May 23-26, 2024