Revealing the fundamental character of the strong force

From PDFs to the underlying QCD

Fred Olness SMU

Thanks for substantial input from my friends & colleagues

Mitchell Conference TAMU 24 May 2024

A Deeper Understanding of the strong nuclear force

HILLHC PROJECT

CMS Lead ion collisions

Electron-Ion Collider

Heavy-Flavor TheorY (HEFTY) for QCD Matter

The Saturated Glue (SURGE) Collaboration

Mission statement: Discover and explore the gluon saturation regime of quantum chromodynamics by advancing calculations to high precision and developing a comprehensive framework to compute observables and compare to a wide range of experimental data, including predictions for the Electron Ion Collider (EIC).

https://www.bnl.gov/physics/surge/

Saturation

The Saturated Glue (SURGE) Collaboration

Initial state WG Improve the initial conditions for evolution for unpolarized and polarized observables. Small x evolution + NLO calculations WG Non-linear evolution at NLO and beyond, computation and implementation of impact factors

Spin WG Analyze role saturation in the polarized observables. Elucidate the role of chiral anomaly in small x helicity evolution. **Final states WG** Construct a framework for hadronization in a saturated environment, including development of MC generator based on CGC calculations

Global analysis WG To establish saturation, perform comprehensive global analysis quantifying and minimizing uncertainties, extracting universal building blocks of high energy factorization.

- Initial state (Vladi Skokov)
- Small x evolution + NLO calculations (Zhongbo Kang)
- Spin (Yuri Kovchegov)
- Framework and global analysis (Fred Olness)
- Final state (Xin-Nian Wang)

Bjoern Schenke Project Director & Co-spokesperson (631) 344-5805, bschenke@bnl.gov

Co-spokesperson Penn State (814) 865-7976, <u>ams52@psu.edu</u>

To boldy go where no analysis has gone before

Do we really understand QCD

push to extreme {x,Q}

Low-x: Shadowing Recombination Resummation BFKL Saturation

Low-Q²:

Non-Perturbative inteface collective effects Target Mass Corrections pick up M^2/Q^2 higher twist F_L at low Q² access to g(x)

Need theoretical guidance in these regions

High-x:

....

Nuclear PDFs: x>1 allowed; impacts F_2^{Nuc}/F_2^{Iso} in Fermi region Target Mass Corrections pick up M^2/Q^2 higher twist Deuteron Corrections impacts $F_2^{Nuc}/F_2^{Deuteron}$ ratio

Are we just looking under the lamppost

What's ν with ν

... an old problem

neutrino DIS

some new results

Thanks to Peter Risse & Valerio Bertone

Precision, Precision... but systematic effect: theory and experiment

- Discrepancy between CCFR (v) and NMC(µ) data at low x region (0.01<x<0.1)
 - Resolved by the proper handling of massive charm treatment (VFS, FFS): Model Ind. CCFR F2, xF3, δxF, Phys.Rev.Lett. 86 (2001) 2742
- > Discrepancy in QCD analysis between CCFR(v) and CDHSW (v)
 - Problem appeared in the CDHSW diff. cross section, overall level fine, but wrong y-dependence, *Phys.Rev.Lett.* 87 (2001) 251802
- Discrepancy in diff. cross section between CCFR(v) and NuTeV (v) at high x region (x>0.5), making a new discrepancy at high region
 - Problem appeared in the toroidal magnet calibration of the CCFR detector: *Phys.Rev.D* 74 (2006) 012008
- Different neutrino effect in neutrino: MINERvA saw a different nuclear effect?
- d/u at high x and asymmetry in strange sea
 - Updated d/u→0.2 or 0 at x=1
 - Asymmetry measurement in strange sea: correlated with d/u issue

Neutrinos: many outstanding puzzles & discrepancies

Puzzle: Split Personality ... What is the correct Nuclear ratio

Charged Lepton DIS

some caveats ... correlated errors

Propagation of γ/W thru nuclei

nuclear parton distribution functions

PHYSICAL REVIEW D 106, 074004 (2022)

Compatibility of neutrino DIS data and its impact on nuclear parton distribution functions

K. F. Muzakka,^{1,*} P. Duwentäster¹,¹ T. J. Hobbs,^{2,3} T. Ježo⁰,¹ M. Klasen,¹ K. Kovařík,^{1,†} A. Kusina⁰,⁴ J. G. Morfín⁰,² F. I. Olness,⁵ R. Ruiz⁰,⁴ I. Schienbein,⁶ and J. Y. Yu⁵

To Do List:

... more data

... improved predictions

Higher Order Calculations: ... crossing mass thresholds

Two-Loop Total Cross Section: One Scale

$$\sigma(Q^2) = \sigma_0 \left\{ 1 + \frac{\alpha_s(Q^2)}{4\pi} (3C_F) + \left(\frac{\alpha_s(Q^2)}{4\pi} \right)^2 \left[-C_F^2 \left[\frac{3}{2} \right] + C_F C_A \left[\frac{123}{2} - 44\zeta(3) \right] + C_F T n_f (-22 + 16\zeta(3)) \right] \right\}$$

Two-Loop Drell-Yan Cross Section: Two Scales

$$\begin{split} H_{q\bar{q}}^{(2),S+V}(z) &= \left[\frac{\alpha_s}{4\pi}\right]^2 \delta(1-z) \left\{ C_A C_F \left[\left[\frac{193}{3} - 24\xi(3)\right] \ln \left[\frac{Q^2}{M^2}\right] - 11 \ln^2 \left[\frac{Q^2}{M^2}\right] - \frac{12}{5}\xi(2)^2 + \frac{592}{9}\xi(2) + 28\xi(3) - \frac{1535}{12} \right] \right. \\ &+ C_F^2 \left[\left[18 - 32\xi(2)\right] \ln^2 \left[\frac{Q^2}{M^2}\right] + \left[24\xi(2) + 176\xi(3) - 93\right] \ln \left[\frac{Q^2}{M^2}\right] \right] \\ &+ \frac{8}{5}\xi(2)^2 - 70\xi(2) - 60\xi(3) + \frac{511}{4} \right] \\ &+ n_f C_F \left[2 \ln^2 \left[\frac{Q^2}{M^2}\right] - \frac{34}{3} \ln \left[\frac{Q^2}{M^2}\right] + 8\xi(3) - \frac{112}{9}\xi(2) + \frac{127}{6} \right] \right] \\ &+ C_A C_F \left[-\frac{44}{3} \mathcal{D}_0(z) \ln^2 \left[\frac{Q^2}{M^2}\right] + \left\{ \left[\frac{536}{3} - 16\xi(2)\right] \mathcal{D}_0(z) - \frac{176}{3} \mathcal{D}_1(z) \right] \ln \left[\frac{Q^2}{M^2}\right] \right] \\ &- \frac{176}{3} \mathcal{D}_2(z) + \left[\frac{1092}{9} - 32\xi(2)\right] \mathcal{D}_1(z) + \left[56\xi(3) + \frac{175}{3}\xi(2) - \frac{1616}{27}\right] \mathcal{D}_0(z) \right] \\ &+ C_F^2 \left[\left[64 \mathcal{D}_1(z) + 48 \mathcal{D}_0(z) \right] \ln^2 \left[\frac{Q^2}{M^2}\right] + \left\{ 192 \mathcal{D}_2(z) + 96 \mathcal{D}_1(z) - \left[128 + 64\xi(2)\right] \mathcal{D}_0(z) \right] \ln \left[\frac{Q^2}{M^2}\right] \right] \\ &+ 128 \mathcal{D}_3(z) - (128\xi(2) + 256) \mathcal{D}_1(z) + 256\xi(3) \mathcal{D}_0(z) \right] \\ &+ n_f C_F \left[\frac{8}{3} \mathcal{D}_0(z) \ln^2 \left[\frac{Q^2}{M^2}\right] + \left\{ \frac{52}{3} \mathcal{D}_1(z) - \frac{80}{9} \mathcal{D}_0(z) \right] \ln \left[\frac{Q^2}{M^2}\right] + \frac{52}{3} \mathcal{D}_2(z) - \frac{160}{9} \mathcal{D}_1(z) + \left[\frac{224}{27} - \frac{32}{3}\xi(2)\right] \mathcal{D}_0(z) \right] \end{split}$$

Ref: CTEQ Handbook

Implementation

Neutral Current S-ACOT χ implemented at N2LO and N3LO

Features & Recent Updates: NNLO DGLAP

Photon PDF & QED Pole & MS-bar masses Profiling and Re-Weighting BFKL interface Heavy Quark Variable Tresh Improvements in χ^2 and correlations TMD PDFs (uPDFs) ... and many other

xFitter 2.2.0 Future Freeze

19/43

ACOT Charged Current to N2LO: ... Impacts Neutrino Data

Precision, Precision... but systematic effect: theory and experiment

- Discrepancy between CCFR (v) and NMC(µ) data at low x region (0.01<x<0.1)
 - Resolved by the proper handling of massive charm treatment (VFS, FFS): Model Ind. CCFR F2, xF3, δxF, Phys.Rev.Lett. 86 (2001) 2742
- > Discrepancy in QCD analysis between CCFR(v) and CDHSW (v)
 - Problem appeared in the CDHSW diff. cross section, overall level fine, but wrong y-dependence, *Phys.Rev.Lett.* 87 (2001) 251802
- Discrepancy in diff. cross section between CCFR(v) and NuTeV (v) at high x region (x>0.5), making a new discrepancy at high region
 - Problem appeared in the toroidal magnet calibration of the CCFR detector: *Phys.Rev.D* 74 (2006) 012008
- Different neutrino effect in neutrino: MINERvA saw a different nuclear effect?
- d/u at high x and asymmetry in strange sea
 - Updated d/u→0.2 or 0 at x=1
 - Asymmetry measurement in strange sea: correlated with d/u issue

Beyond the proton ...

... beyond parameterizations? ... nearest neighbor interactions 23

Ge As

Sn

Pb

Se

Те

Po

Lv Uus

Sb

Bi

Fl Uup

Br

At

"Free nucleons" + "nucleon pairs"

	Improved fit compared to traditional approach							
$\chi^2/N_{ m data}$	DIS	DY	W/Z	JLab	$\chi^2_{ m tot}$	$\left \frac{\chi^2_{\rm tot}}{N_{\rm DOF}}\right $		
traditional	0.85	0.97	0.88	0.72	1408	0.85	$\backslash /$	Standard
baseSRC	0.84	0.75	1.11	0.41	1300	0.80		Free p & n
pnSRC	0.85	0.84	1.14	0.49	1350	0.82		Link p & n
$N_{ m data}$	1136	92	120	336	1684]	

Fully accounts for all DOF

Evidence for Modified Quark-Gluon Distributions in Nuclei by Correlated Nucleon Pairs

A.W. Denniston (**b**,¹, * T. Ježo (**b**,², [†] A. Kusina (**b**,³ N. Derakhshanian (**b**,³ P. Duwentäster (**b**,^{2,4,5} O. Hen (**b**,¹ C. Keppel (**b**,⁶ M. Klasen (**b**,^{2,7} K. Kovařík (**b**,² J.G. Morfín (**b**,⁸ K.F. Muzakka (**b**,^{2,9} F.I. Olness (**b**,¹⁰ E. Piasetzky (**b**,¹¹ P. Risse (**b**,² R. Ruiz (**b**,³ I. Schienbein (**b**,¹² and J.Y. Yu. (**b**)¹²

Hen Lab

ArXiV:2312.16293

28

Consistent with hypothesis that SRCs are (pn) pairs

Nuclear A	2	3	4	6	9	12	14	27	40	56	64	84	108	119	131	184	197	208
$\# ext{ data}$	275	125	66	15	49	196	101	73	92	134	61	84	7	152	4	37	50	163

Simple Nearest-Neighbor (SRC) inspired form yields remarkably good fit

Comparable/better than traditional approach

Coefficients scale with In(A)

Separate p,n fits are consistent with (pn) SRC pairs

$\chi^2/N_{ m data}$	DIS	DY	W/Z	JLab	$\chi^2_{ m tot}$	$\frac{\chi^2_{\rm tot}}{N_{\rm DOF}}$
traditional	0.85	0.97	0.88	0.72	1408	0.85
baseSRC	0.84	0.75	1.11	0.41	1300	0.80
pnSRC	0.85	0.84	1.14	0.49	1350	0.82
$N_{ m data}$	1136	92	120	336	1684	

Nature is trying to tell us something

This parameter form connects to new concepts

CONCLUSIONS:

Assembling the puzzle pieces

Interdisciplinary ... Use tools from HEP, Nuclear, & Lattice QCD

... to really understand the strong force

APFEL++

APFEL++ - A PDF evolution library in c++

Bertone, arXiv:1708.00911

Available schemes in APFEL++

Valerio Bertone

Peter Risse

scheme	$\mathcal{O}(lpha_s)$	NC: F_2	NC: F_3	NC: F_L	сс: <i>F</i> ₂	$\mathbf{CC}:$ F_3	$\mathbf{CC}:$ F_L
ZM	N2LO	1	1	1	1	1	1
FONLL-C	N2LO	1	×	×	×	×	×
ACOT	NLO	1	1	1	×	×	×
sACOT- χ	NLO	1	1	1	×.	1	1
approx. sACOT- χ	N2LO	1	1	1	1	1	1

Code benchmark timings:

Original Fortran Code

contains multiple levels of integrals

New C++ Code

using modern grid techniques

Typical fits current run a few days to a week. This will be reduced to a few hours.

High order DIS processes (Peter Risse)

Multi-scale problems are hard: Thank you to those computing these results

Proper mass treatment: essential to fit PDFs over large Q scales

Many outstanding issues related to neutrino DIS analysis Improved calculations can help

Approximate S-ACOT-χ: leverages N2LO and N3LO results

Neutral Current:

N2LO and N3LO available in xFitter (no grids)

Results with APFEL++ Grids: <u>BOTH</u> Charged Current & Neutral Current results Speed increase of ~100× Valerio Berry Valeri Berry Valerio Berry Valerio Berry Valeri Berry Valerio B

EXTRAS

Texas A&M University Physics and Astronomy

Heavy-Flavor TheorY (HEFTY) for QCD Matter

Jet nuclear modification factor

QCD: From PDFs to the underlying QCD

Saturation, BFKL, recombination, ...

Can Saturation be Discovered at EIC?

EIC has an unprecedented small-x reach for DIS on large nuclear targets, allowing to seal the discovery of saturation physics and study of its properties:

xFitter Resummation Study

4

Two approaches to the calculation

q

Parton Model

Dipole

Dipole approach to high parton density QCD

$$\sigma = f(x, Q) \otimes \widehat{\sigma}$$

$$\sigma_{tot}^{\gamma^*A}(x, Q^2) = |\Psi^{\gamma^* \to q\bar{q}}(\vec{x}_\perp, z)|^2 \sigma_{tot}^{q\bar{q}A}(\vec{x}_\perp, Y)$$

nPDF Wish List

www.ncteq.org

nPDF General Issues:

• Proton PDF; nuclear corrections for interpreting heavy target DIS (Ar, Fe, Pb).

Strange quark & Gluon PDF:

• Resolve tension between fixed-target (νN , ℓN) and collider expectations (W[±],Z)

<u>Charm & Bottom: c(x) & b(x)</u>

- Multi-scale & resummation issues: $Log(m_{c,b}/Q)$
- "Fitted" charm: $c(x) \neq 0$ at m_c
- Intrinsic heavy flavors: $c(x) \neq 0$ at $Q \leq m_c$

Neutrino cross sections on heavy targets (Ar, Fe, Pb)

• Universality of Neutral Current (γ) & Charged Current (W^{\pm}) processes

Expanded {x,Q²} Kinematic Regime

- Small-x saturation, resummation: Log[1/x]
- Large-x higher twist: (M^2/Q^2)
- Low Q² non-perturbative effects

Compilation by Fred Olness with helpful feedback from: Alberto Accardi, Tim Hobbs, Tomas Jezo, Thia Keppel, Michael Klasen, Karol Kovarik, Aleksander Kusina, Jorge Morfin, Pavel Nadolsky, Jeff Owens, Ingo Schienbein, Efrain Segarra, Steve Sekula, Ji-Young Yu

QCD: From Parameterization to a Deeper Understanding

Proton PDF: $f_p(x,Q)$

generally NNLO; approaching ~1% precision; Boundary Conditions for nuclear PDF

Nuclear PDF: $f_A(x,Q)$

generally NLO; leverage proton PDF tools; recent progress encouraging (e.g., PDG)

evolve from parameterizing to deeper understanding of QCD

Extend kinematic {x,Q} range: ... probe extreme regions of QCD Low Q: non-perturbative region; correlation effects ... Low x: resummation; saturation; BFKL; ... Low W: resonance region; duality; ...

Need theoretical guidance in these regions

Extend Unpolarized Colinear to Spin, TMD & GPD

... explore full tomographic nuclear structure in spin, k_T , b_T precision $f_A(x,Q)$ can serve as Boundary Condition for $f_A(x,Q,k_T,b_T,\sigma)$ include Lattice QCD info on moments and quasi-PDFs

Need coordination/communication between efforts