Collider and gravitational wave signals for electroweak phase transition

Gonçalves, Kaladharan, Wu (PRD 2022, PRD 2023, PRD 2023)

Mitchell conference on Collider, DM, and Neutrino physics Texas A&M - 24th May 2024

Collider and gravitational wave signals for electroweak phase transition

Gonçalves, Kaladharan, Wu (PRD 2022, PRD 2023, PRD 2023)

Mitchell conference on Collider, DM, and Neutrino physics Texas A&M - 24th May 2024

Dorival Gonçalves

Higgs Potential: Collider & GW Complementarity

Higgs Potential: Collider & GW Complementarity

Texas A&M - 05.24.2024

The Shape of the Higgs Potential

 $V_{\text{eff}} = V_0 + V_1 + V_T$

Barrier formation: tree vs. one-loop vs. thermally induced barrier

Dorival Gonçalves

DG, Kaladharan, Wu PRD 22

Potential barrier induced by one-loop+thermal effects for more than 99% of points

Dorival Gonçalves

Dorival Gonçalves

Mass Hierarchy for strong first-order phase transition

DG, Kaladharan, Wu '21; Dorsh, Huber, No 13'

Due to the preference for large mass hierarchy among the scalar modes, it is likely that at least one of the scalar states be above the top-quark pair threshold: Favors $gg \rightarrow H/A \rightarrow tt$ searches

 $\longrightarrow m_H < m_{H^{\pm}} \approx m_A$: most favorable region for SFOEWPT Favors BSM searches via $A \to ZH$ channel

Dorival Gonçalves

Mass Hierarchy for strong first-order phase transition

DG, Kaladharan, Wu '21; Dorsh, Huber, No 13'

→ $m_H \approx m_{H^{\pm}} \approx m_A$ region leads to depleted number of SFOEWPT points. Due to the charged Higgs mass constraint $m_{H^{\pm}} > 580$ GeV, the type-II 2HDM displays further suppression for this region in comparison to type-I.

Collider & GW complementarity

Non-resonant di-Higgs searches:

ATLAS+CMS projections from European strategy

While HL-LHC sensitive to SFOEWPT with $\xi_c>2.5$, LISA sensitive to GW signals in complementary regime $\xi_c<2.5$

Collider & GW complementarity

Resonant di-Higgs searches:

 $\xi_c > 1 \rightarrow m_H \lesssim 750 \text{ GeV}: pp \rightarrow H \rightarrow hh \text{ searches is favored at LHC}$

While HL-LHC sensitive to SFOEWPT with large ξ_c , LISA sensitive to GW signals in complementary regime

$gg \rightarrow H/A \rightarrow tt$: HL-LHC projection

DG, Kaladharan, Wu '21

 \implies gg \rightarrow H/A \rightarrow tt searches can play a leading role to probe the strong first order EWPT regime They will be specially important in the type-2 2HDM, as it presents typically heavy scalar masses

Top Pair Resonant Searches via $pp \rightarrow ZH/A$

DG, Kaladharan, Wu '22

Type-1 2HDM with $c_{\beta-\alpha} \approx 0.3$, $m_H = 600$ GeV, $m_A = 750$ GeV, and $t_{\beta} = 1$

CMS-PAS-B2G-23-006, see talk by Hyunyong Kim

Dorival Gonçalves

Type-1 2HDM with $c_{\beta-\alpha} \approx 0.1$, $m_H = 600$ GeV, $m_A = 750$ GeV, and $t_{\beta} = 1$

Interference between signal and ttZ background generates subleading effects for allowed 2HDM parameter space

Top Pair Resonant Searches via $pp \rightarrow ZH/A$

pp→ZH/A searches mostly account for H/A→bb and H→WW (sensitivity $m_{H,A}$ < 350 GeV)

Above top-quark pair threshold the H/A \rightarrow tt is typically dominant decay, leading to strong limits, and extending the sensitivity to strong first-order phase transition regime CMS-PAS-B2G-23-006 See talk by Hyunyong Kim

Smoking gun signatures at the HL-LHC

Complementarity of the Higgstrahlung searches with other relevant classes of searches at the HL-LHC

Type-I $\xi_c > 1$ Malt -> hh 16.58% 6.41% 14.58% 24.70%1.00% 3.95% 19.48% 3.30% $A(H) \rightarrow ZH(A)$

 $\cos(\beta - \alpha) \in (-0.3, 0.3),$

 $\tan \beta \in (0.8, 25), \qquad m_{12}^2 \in (10^{-3}, 10^5) \,\mathrm{GeV}^2,$ $m_A \in (150, 1500) \,\mathrm{GeV}\,,$

Gonçalves, Kaladharan, Wu (PRD, 2022) Gonçalves, Kaladharan, Wu (PRD, 2023) Gonçalves, Kaladharan, Wu (PRD, 2023)

 $m_H \in (150, 1500) \,\mathrm{GeV}\,,$ $m_{H^{\pm}} \in (150, 1500) \,\mathrm{GeV}.$

Gonçalves, Kaladharan, Wu (PRD, 2022) Gonçalves, Kaladharan, Wu (PRD, 2023) Gonçalves, Kaladharan, Wu (PRD, 2023)

In contrast to HL-LHC, LISA is going to be sensitive to a significantly smaller parameter space region, whereas it renders to complementary sensitivities where correspondent LHC cross-section is suppressed

Requirement for small scalar masses to induce vacuum upliftment play crucial role for sizable HL-LHC sensitivity

Thermal history of EWSB could have profound consequences for particle physics and cosmology

- The strength of phase transition is correlated with the upliftment of the true vacuum with respect to the symmetric one at zero temperature
- >2HDM leads to rich phase transition, favoring SFOEWPT below TeV scale

> Typically, as the order parameter increases, the resonance becomes lighter

Strong extra motivation for scalar searches at the LHC!

Smoking gun signatures for SFOEWPT at HL-LHC: H,A→ tt:, di-Higgs, and A(H)→ZH(A)

Dorival Gonçalves

Work in collaboration with

Ajay Kaladharan (OSU)

Yongcheng Wu (Faculty Nanjing Normal University)

2HDM: Parameter Space Scan

$\tan\beta\in\left(0.8,25\right),$	$m_{12}^2 \in (10^{-3}, 10^5) { m GeV}^2 ,$	$m_H \in (150, 1500) \mathrm{GeV},$
$\cos(\beta - \alpha) \in (-0.3, 0.3),$	$m_A \in (150, 1500) \mathrm{GeV},$	$m_{H^{\pm}} \in (150, 1500) \mathrm{GeV}.$

ScannerS

Theoretical and experimental constraints:

- Perturbative unitarity
- Boundedness from below

→ Vacuum stability

- Electroweak precision constraints (S/T/U)
- → Flavor constraints
- Higgs signal strengths and heavy scalar searches

HiggsBounds & HiggsSignals

The Shape of the Higgs Potential

Vacuum Upliftment:

 $\frac{\Delta \mathcal{F}_0}{|\mathcal{F}_0^{\rm SM}|} \equiv \frac{\mathcal{F}_0 - \mathcal{F}_0^{\rm SM}}{|\mathcal{F}_0^{\rm SM}|}$

$$\mathcal{F}_0 \equiv V_{
m eff}(v_1, v_2, T = 0) - V_{
m eff}(0, 0, T = 0)$$

C2HDM displays the same general profile:

FIG. 3: SNR versus $\Delta \mathcal{F}_0/\mathcal{F}_0^{\text{SM}}$ color coded with ξ_n for the Type I parameter point with $\xi_n > 1$. The dotted line in the plot corresponds to an SNR value of 10, serving as the threshold above which LISA can probe the parameter points.

The Shape of the Higgs Potential

FIG. 3: Left panel: the ratio $\frac{\delta V_1^b}{\delta V_1^b + \delta V_T^b}$ for the barrier at T_c versus ξ_c . Blue denotes the points with $\xi_c > 1$ and have nucleation temperature, while gray represents points with first-order phase transition. Right panel: the ratio $\frac{\delta V_1^b}{\delta V_1^b + \delta V_T^b}$ for the barrier at T_c versus $\delta \mathcal{F}_0/\mathcal{F}_0^{\text{SM}}$ color coded with ξ_c . Gray denotes all first-order phase transition points. We assume the type-I 2HDM, focusing on the most probable region in Fig. 2, where the barrier is generated by the one-loop and thermal corrections $\delta V_1^b, \delta V_T^b > 0$.

Resonant top pair searches

Resonant top pair production is a relevant signature for many BSM frameworks: 2HDM, SM+singlet, combinations of singlet and doublet fields, extra dimensions... Branco, Ferreira, Lavoura, Rebelo, Sher, Silva 2011; Muhlleitner, Sampaio, Santos, Wittbrodt 2017

gg—H/A—tt channel: interesting signature with large signal/background interference

Gaemers, Hoogeveen '84 Dicus, Stange, Willenbrock '94 Frederix, Maltoni '07 ATLAS – arXiv:1804.10823 CMS – arXiv:1908.01115

Resonant top pair searches can be a window to electroweak phase transition

DG, Kaladharan, Wu arxiv:2108.05356 and arxiv:2206.08381