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High Energy Neutrinos (HENs)
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Gigantic detectors to compensate for the tiny flux of HENs.
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IceTop
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2 optical sensors per tank
324 optical sensors
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December, 2010: Project completed, 86 strings 11520 DOMs 5
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Detecting HENs at IceCube

(+X (CO)
N
et o= {VHX (NC)

Let us ignore BSM interactions (for this talk).

} N

hadrons

CCDIS

Throughgoing muon

CC tau ‘double bang’

(track only, huge statistics)
CC Muon (track)  (only at E,, > 100 TeV) v e

CC EM/NC all
(shower)

Showers: Good energy resolution, but poor angular resolution
Tracks: Excellent angular resolution, but modest energy resolution

Track events are ideal for astrophysical source identification.
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Astrophysical Sources and Multimessenger Connection
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Numerous Neutrino Sources

@ Expect numerous population of neutrino

45
Diffuse
sources to account for the observed
440 K
L diffuse flux.
§| g 435 Upper fimit” -~ . ) .
= ;;_—semmy e o Following star-formation rate, inferred
g e i population density > 7 x 1072 Mpc 3.
80
= 425 [IceCube Collaboration, 2210.04930 (ApJ)]
—— This analysis (Time integrated, 9.6 yr.)
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But why do we see so few in the EM Spectrum?
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[IceCube Collaboration, 2211.09972 (Science)]

Source Source Type  —log;yPlocal Ts 4 z

NGC 1068 SBG/AGN 7.0 (5.20) 79 3.2 0.0038 (14.4 Mpc)
PKS 1424+240 BLL 4.0 (3.70) 77 3.5 0.6047 (2.6 Gpc)
TXS 0506+056 BLL/FSRQ 3.6 (3.50) 5 2.0 0.3365 (1.4 Gpc)
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Source Source Type  —log;yPlocal Ts 4 z

NGC 1068 SBG/AGN 7.0 (5.20) 79 3.2 0.0038 (14.4 Mpc)
PKS 1424+240 BLL 4.0 (3.70) 77 3.5 0.6047 (2.6 Gpc)
TXS 0506+056 BLL/FSRQ 3.6 (3.50) 5 2.0 0.3365 (1.4 Gpc)

Obscured (Compton-thick) AGNs: Hidden neutrino sources?
[Murase, Kimura, Meszaros, 1904.04226 (PRL); Fang, Gallagher, Halzen, 2205.03740 (ApJ)]



One in Four AGNs is Compton Thick in the Local Universe

20-100 keV) =48

[Malizia et al., 0906.5544 (MNRAS)]

Column density Ny = f nedr > J;l ~ 1.5 x 10?* cm™? corresponds to unity optical depth.




must undergo Matter Effect
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@ Resonant flavor conversion, analogous to supernova case: [Dighe, Smimov, hep-ph/9907423 (PRD)]
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@ Resonant flavor conversion, analogous to supernova case: [Dighe, Smimov, hep-ph/9907423 (PRD)]
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@ Resonant flavor conversion, analogous to supernova case: [Dighe, Smimov, hep-ph/9907423 (PRD)]
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o Numerically, need nZ ~ 10*°cm™3(100 TeV/E,) and nZ ~ 10%cm~3(100 TeV/E,)

for resonant conversion.
@ Are these number densities realistic for AGNs? YES. [1406.4502; 1411.0670; 1511.03503; 1806.04680]
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Modifies the Flavor Composition of HENs
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Modifies the Flavor Composition of HENs
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Another Matter Effect due to CvB
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Another Matter Effect due to CvB
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CvB matter potential: V = V2Grn, ~1073% V.
Resonance condition: dm> cos(20) = 2E, Vies.
For E, ~ 10 TeV, resonance condition is satisfied with dm? ~ 10722 eV2.
Pseudo-Dirac neutrinos! [Carloni, Martinez-Soler, Argiiclles, Babu, BD, 2212.00737 (PRD L)]

Flavor composition of HENs will be modified by CvB matter effect if neutrinos are
pseudo—DiraC. [BD, Machado, Martinez-Soler, to appear]
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Oscillation Probability
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Sensitive to CvB Overdensity

dmj = 10717 eV?
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Sensitive to CvB Overdensity

dmj = 10717 eV?
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Energy-dependent Flavor Effect
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Energy-dependent Flavor Effect
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Conclusions

o The sources of HENs are largely unknown.
@ Precision measurements of their flavor composition will give crucial information.

o It is essential to include the source matter effect, which is non-negligible for
Compton-thick sources.

@ Might be the ONLY way to discover heavily Compton-thick sources (with
Ng > 10%° CII172), which are neutrino bright, but EM dark.

o If neutrinos are pseudo-Dirac, CvB can induce additional, energy-dependent matter effect
on the flavor composition.

@ Sensitive to (local) CvB overdensity.
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Flavor Triangles for Pseudo-Dirac Neutrinos
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