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Detecting HENs at IceCube

ν` +N →
{

`+X (CC)
ν` +X (NC)

Let us ignore BSM interactions (for this talk).

Signatures of  signal events
Neutrino Event Signatures
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Astrophysical Sources and Multimessenger Connection

  

Introduction of Neutrino Flux
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Power law structure inherited from CR

consider
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  Typical (1 : 1 : 1) (1 : 1 : 1)

  μ  damped (4 : 7 : 7) (4 : 7 : 7)

[Halzen, Kheirandish, 2202.00694]
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Numerous Neutrino Sources

Expect numerous population of neutrino
sources to account for the observed
diffuse flux.

Following star-formation rate, inferred
population density & 7× 10−9 Mpc−3.
[IceCube Collaboration, 2210.04930 (ApJ)]
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But why do we see so few in the EM Spectrum?

[IceCube Collaboration, 2211.09972 (Science)]

Source Source Type − log10 plocal n̂s γ̂ z

NGC 1068 SBG/AGN 7.0 (5.2σ) 79 3.2 0.0038 (14.4 Mpc)
PKS 1424+240 BLL 4.0 (3.7σ) 77 3.5 0.6047 (2.6 Gpc)
TXS 0506+056 BLL/FSRQ 3.6 (3.5σ) 5 2.0 0.3365 (1.4 Gpc)

Obscured (Compton-thick) AGNs: Hidden neutrino sources?
[Murase, Kimura, Meszaros, 1904.04226 (PRL); Fang, Gallagher, Halzen, 2205.03740 (ApJ)]
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One in Four AGNs is Compton Thick in the Local Universe

[Malizia et al., 0906.5544 (MNRAS)]

Column density NH =
∫
nedr ≥ σ−1

T ' 1.5× 1024 cm−2 corresponds to unity optical depth.
7



Neutrinos from Compton-thick AGNs must undergo Matter Effect

[BD, Jana, Porto, 2312.17315]

Resonant flavor conversion, analogous to supernova case: [Dighe, Smirnov, hep-ph/9907423 (PRD)]

√
2GFnres

e = ∆m2
i1

2Eν
cos 2θ1i.

Numerically, need nHe ≈ 1020cm−3(100 TeV/Eν) and nLe ≈ 1018cm−3(100 TeV/Eν)
for resonant conversion.
Are these number densities realistic for AGNs? YES. [1406.4502; 1411.0670; 1511.03503; 1806.04680]
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Modifies the Flavor Composition of HENs

Vacuum Oscillations (NO)
π-decay (1/3, 2/3, 0)S → (0.30, 0.37, 0.33)⊕
µ-damped (0, 1, 0)S → (0.17, 0.47, 0.36)⊕
n-decay (1, 0, 0)S → (0.55, 0.17, 0.28)⊕

Matter Effect (NO), pp production
π-decay (1/3, 2/3, 0)S → (0.34, 0.33, 0.33)⊕
µ-damped (0, 1, 0)S → (0.34, 0.33, 0.33)⊕
n-decay (1, 0, 0)S → (0.67, 0.08, 0.25)⊕

Matter Effect (NO), pγ production
π-decay (1/3, 2/3, 0)S → (0.23, 0.40, 0.37)⊕
µ-damped (0, 1, 0)S → (0.50, 0.20, 0.30)⊕
n-decay (1, 0, 0)S → (0.67, 0.08, 0.25)⊕

9



Modifies the Flavor Composition of HENs

Vacuum Oscillations (NO)
π-decay (1/3, 2/3, 0)S → (0.30, 0.37, 0.33)⊕
µ-damped (0, 1, 0)S → (0.17, 0.47, 0.36)⊕
n-decay (1, 0, 0)S → (0.55, 0.17, 0.28)⊕

Matter Effect (NO), pp production
π-decay (1/3, 2/3, 0)S → (0.34, 0.33, 0.33)⊕
µ-damped (0, 1, 0)S → (0.34, 0.33, 0.33)⊕
n-decay (1, 0, 0)S → (0.67, 0.08, 0.25)⊕

Matter Effect (NO), pγ production
π-decay (1/3, 2/3, 0)S → (0.23, 0.40, 0.37)⊕
µ-damped (0, 1, 0)S → (0.50, 0.20, 0.30)⊕
n-decay (1, 0, 0)S → (0.67, 0.08, 0.25)⊕

9



Modifies the Flavor Composition of HENs

Vacuum Oscillations (NO)
π-decay (1/3, 2/3, 0)S → (0.30, 0.37, 0.33)⊕
µ-damped (0, 1, 0)S → (0.17, 0.47, 0.36)⊕
n-decay (1, 0, 0)S → (0.55, 0.17, 0.28)⊕

Matter Effect (NO), pp production
π-decay (1/3, 2/3, 0)S → (0.34, 0.33, 0.33)⊕
µ-damped (0, 1, 0)S → (0.34, 0.33, 0.33)⊕
n-decay (1, 0, 0)S → (0.67, 0.08, 0.25)⊕

Matter Effect (NO), pγ production
π-decay (1/3, 2/3, 0)S → (0.23, 0.40, 0.37)⊕
µ-damped (0, 1, 0)S → (0.50, 0.20, 0.30)⊕
n-decay (1, 0, 0)S → (0.67, 0.08, 0.25)⊕

9



Modifies the Flavor Composition of HENs

Vacuum Oscillations (NO)
π-decay (1/3, 2/3, 0)S → (0.30, 0.37, 0.33)⊕
µ-damped (0, 1, 0)S → (0.17, 0.47, 0.36)⊕
n-decay (1, 0, 0)S → (0.55, 0.17, 0.28)⊕

Matter Effect (NO), pp production
π-decay (1/3, 2/3, 0)S → (0.34, 0.33, 0.33)⊕
µ-damped (0, 1, 0)S → (0.34, 0.33, 0.33)⊕
n-decay (1, 0, 0)S → (0.67, 0.08, 0.25)⊕

Matter Effect (NO), pγ production
π-decay (1/3, 2/3, 0)S → (0.23, 0.40, 0.37)⊕
µ-damped (0, 1, 0)S → (0.50, 0.20, 0.30)⊕
n-decay (1, 0, 0)S → (0.67, 0.08, 0.25)⊕

9



Modifies the Flavor Composition of HENs

[BD, Jana, Porto, 2312.17315]

10

https://arxiv.org/pdf/2312.17315


Modifies the Flavor Composition of HENs

[BD, Jana, Porto, 2312.17315]

11

https://arxiv.org/pdf/2312.17315


Modifies the Flavor Composition of HENs

[BD, Jana, Porto, 2312.17315]

12

https://arxiv.org/pdf/2312.17315


Another Matter Effect due to CνB

CνB matter potential: V =
√

2GFnν ∼ 10−35 eV.
Resonance condition: δm2 cos(2θ) = 2EνVres.
For Eν ∼ 10 TeV, resonance condition is satisfied with δm2 ∼ 10−22 eV2.
Pseudo-Dirac neutrinos! [Carloni, Martı́nez-Soler, Argüelles, Babu, BD, 2212.00737 (PRD L)]

Flavor composition of HENs will be modified by CνB matter effect if neutrinos are
pseudo-Dirac. [BD, Machado, Martı́nez-Soler, to appear]
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Oscillation Probability

Pαβ =
∑
j

|Uαj |2|Uβj |2
[

cos2 θ̃ij cos2 θ̃fj + sin2 θ̃ij sin2 θ̃fj

+ 1
2 sin 2θ̃ij sin 2θ̃fj cos

(∫
dx
δm̃2

j

4Eν

)]
.
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Sensitive to CνB Overdensity
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Conclusions

The sources of HENs are largely unknown.

Precision measurements of their flavor composition will give crucial information.

It is essential to include the source matter effect, which is non-negligible for
Compton-thick sources.

Might be the ONLY way to discover heavily Compton-thick sources (with
NH � 1025 cm−2), which are neutrino bright, but EM dark.

If neutrinos are pseudo-Dirac, CνB can induce additional, energy-dependent matter effect
on the flavor composition.

Sensitive to (local) CνB overdensity.
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Flavor Triangles for Pseudo-Dirac Neutrinos
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