

Matter Effects on Flavor Composition of Astrophysical Neutrinos

Bhupal Dev

bdev@wustl.edu

Washington University in St. Louis

w/ Sudip Jana & Yago Porto, arXiv: <u>2312.17315</u> [hep-ph]; w/ Pedro Machado & Ivan Martínez-Soler, *to appear (soon)*.

The Mitchell Conference on Collider, Dark Matter, and Neutrino Physics May 25, 2024

High Energy Neutrinos (HENs)

High Energy Neutrinos (HENs)

Gigantic detectors to compensate for the tiny flux of HENs.

2

$$\nu_{\ell} + N \rightarrow \begin{cases} \ell + X & (CC) \\ \nu_{\ell} + X & (NC) \end{cases}$$

$$\nu_{\ell} + N \rightarrow \begin{cases} \ell + X & (CC) \\ \nu_{\ell} + X & (NC) \end{cases}$$

CC EM/NC all (shower)

3

$$\nu_{\ell} + N \rightarrow \begin{cases} \ell + X & (CC) \\ \nu_{\ell} + X & (NC) \end{cases}$$

CC EM/NC all (shower)

CC Muon (track)

$$\nu_{\ell} + N \rightarrow \begin{cases} \ell + X & (CC) \\ \nu_{\ell} + X & (NC) \end{cases}$$

CC EM/NC all (shower)

CC tau 'double bang' (only at $E_{\nu} \gtrsim 100 \text{ TeV}$)

$$\nu_{\ell} + N \rightarrow \begin{cases} \ell + X & (CC) \\ \nu_{\ell} + X & (NC) \end{cases}$$

CC EM/NC all (shower)

CC tau 'double bang' (only at $E_{\nu} \gtrsim 100 \text{ TeV}$)

Throughgoing muon (track only, huge statistics)

$$\nu_{\ell} + N \rightarrow \begin{cases} \ell + X & (CC) \\ \nu_{\ell} + X & (NC) \end{cases}$$

CC EM/NC all (shower)

CC tau 'double bang' (only at $E_{\nu} \gtrsim 100 \text{ TeV}$)

Throughgoing muon (track only, huge statistics)

Showers: Good energy resolution, but poor angular resolution **Tracks:** Excellent angular resolution, but modest energy resolution

Track events are ideal for astrophysical source identification.

Astrophysical Sources and Multimessenger Connection

Astrophysical Sources and Multimessenger Connection

Numerous Neutrino Sources

Numerous Neutrino Sources

Numerous Neutrino Sources

- Expect numerous population of neutrino sources to account for the observed diffuse flux.
- Following star-formation rate, inferred population density $\gtrsim 7 \times 10^{-9} \text{ Mpc}^{-3}$. [IceCube Collaboration, 2210.04930 (ApJ)]

But why do we see so few in the EM Spectrum?

[IceCube Collaboration, 2211.09972 (Science)]

But why do we see so few in the EM Spectrum?

Source	Source Type	$-\log_{10} p_{\text{local}}$	\hat{n}_s	$\hat{\gamma}$	z
NGC 1068	SBG/AGN	$7.0(5.2\sigma)$	79	3.2	0.0038 (14.4 Mpc)
PKS 1424+240	BLL	$4.0(3.7\sigma)$	77	3.5	0.6047 (2.6 Gpc)
TXS 0506+056	BLL/FSRQ	$3.6(3.5\sigma)$	5	2.0	0.3365 (1.4 Gpc)

But why do we see so few in the EM Spectrum?

Obscured (Compton-thick) AGNs: Hidden neutrino sources?

[Murase, Kimura, Meszaros, 1904.04226 (PRL); Fang, Gallagher, Halzen, 2205.03740 (ApJ)]

One in Four AGNs is Compton Thick in the Local Universe

[Malizia et al., 0906.5544 (MNRAS)]

Column density $N_{\rm H} = \int n_e dr \ge \sigma_T^{-1} \simeq 1.5 \times 10^{24} \, {\rm cm}^{-2}$ corresponds to unity optical depth.

[BD, Jana, Porto, 2312.17315]

[[]BD, Jana, Porto, 2312.17315]

• Resonant flavor conversion, analogous to supernova case: [Dighe, Smirnov, hep-ph/9907423 (PRD)]

$$\sqrt{2}G_F n_e^{\rm res} = \frac{\Delta m_{i1}^2}{2E_\nu} \cos 2\theta_{1i}.$$

[[]BD, Jana, Porto, 2312.17315]

• Resonant flavor conversion, analogous to supernova case: [Dighe, Smirnov, hep-ph/9907423 (PRD)]

$$\sqrt{2}G_F n_e^{\rm res} = \frac{\Delta m_{i1}^2}{2E_\nu} \cos 2\theta_{1i}.$$

• Numerically, need $n_e^H \approx 10^{20} \text{cm}^{-3} (100 \text{ TeV}/E_{\nu})$ and $n_e^L \approx 10^{18} \text{cm}^{-3} (100 \text{ TeV}/E_{\nu})$ for resonant conversion.

[[]BD, Jana, Porto, 2312.17315]

• Resonant flavor conversion, analogous to supernova case: [Dighe, Smirnov, hep-ph/9907423 (PRD)]

$$\sqrt{2}G_F n_e^{\rm res} = \frac{\Delta m_{i1}^2}{2E_\nu} \cos 2\theta_{1i}.$$

- Numerically, need $n_e^H \approx 10^{20} \text{cm}^{-3} (100 \text{ TeV}/E_{\nu})$ and $n_e^L \approx 10^{18} \text{cm}^{-3} (100 \text{ TeV}/E_{\nu})$ for resonant conversion.
- Are these number densities realistic for AGNs? YES. [1406.4502; 1411.0670; 1511.03503; 1806.04680]

- μ-damped: (0,1,0)_S
- π decay: (1,2,0)_S
- n decay: (1,0,0)_S
- IC-Gen2 best fit
- ----- IC-Gen2 99%
 - ▲ HESE best fit
 - HESE 68%
- ----- HESE 95%

[BD, Jana, Porto, 2312.17315]

[BD, Jana, Porto, 2312.17315]

• μ -damped: $(0,1,0)_S$

• π decay: (1,2,0)_S

n decay: (1,0,0)_S

IC–Gen2 best fit

IC-Gen2 68%

----- IC-Gen2 99%

▲ HESE best fit

— HESE 68%

----- HESE 95%

[BD, Jana, Porto, 2312.17315]

Another Matter Effect due to $C\nu B$

Another Matter Effect due to $C\nu B$

- $C\nu B$ matter potential: $V = \sqrt{2}G_F n_\nu \sim 10^{-35} \text{ eV}.$
- Resonance condition: $\delta m^2 \cos(2\theta) = 2E_{\nu}V_{\rm res}$.
- For $E_{\nu} \sim 10$ TeV, resonance condition is satisfied with $\delta m^2 \sim 10^{-22} \text{ eV}^2$.
- Pseudo-Dirac neutrinos! [Carloni, Martínez-Soler, Argüelles, Babu, BD, 2212.00737 (PRD L)]
- Flavor composition of HENs will be modified by CνB matter effect if neutrinos are pseudo-Dirac. [BD, Machado, Martínez-Soler, to appear]

Oscillation Probability

$$P_{\alpha\beta} = \sum_{j} |U_{\alpha j}|^2 |U_{\beta j}|^2 \left[\cos^2 \tilde{\theta}_j^i \cos^2 \tilde{\theta}_j^f + \sin^2 \tilde{\theta}_j^i \sin^2 \tilde{\theta}_j^f + \frac{1}{2} \sin 2\tilde{\theta}_j^i \sin 2\tilde{\theta}_j^f \cos \left(\int dx \frac{\delta \tilde{m}_j^2}{4E_{\nu}} \right) \right].$$

Oscillation Probability

Sensitive to $C\nu B$ Overdensity

Sensitive to $C\nu B$ Overdensity

Energy-dependent Flavor Effect

Energy-dependent Flavor Effect

Conclusions

- The sources of HENs are largely unknown.
- Precision measurements of their flavor composition will give crucial information.
- It is essential to include the source matter effect, which is non-negligible for Compton-thick sources.
- Might be the ONLY way to discover heavily Compton-thick sources (with $N_{\rm H} \gg 10^{25} {\rm ~cm^{-2}}$), which are neutrino bright, but EM dark.
- If neutrinos are pseudo-Dirac, C\nuB can induce additional, energy-dependent matter effect on the flavor composition.
- Sensitive to (local) $C\nu B$ overdensity.

Conclusions

- The sources of HENs are largely unknown.
- Precision measurements of their flavor composition will give crucial information.
- It is essential to include the source matter effect, which is non-negligible for Compton-thick sources.
- Might be the ONLY way to discover heavily Compton-thick sources (with $N_{\rm H} \gg 10^{25} {\rm ~cm^{-2}}$), which are neutrino bright, but EM dark.
- If neutrinos are pseudo-Dirac, CvB can induce additional, energy-dependent matter effect on the flavor composition.
- Sensitive to (local) $C\nu B$ overdensity.

Flavor Triangles for Pseudo-Dirac Neutrinos

Flavor Triangles for Pseudo-Dirac Neutrinos

