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Gravitational Wave Astronomy

The observation of Gravitational Waves provides 
a new method to explore the universe.
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• GW messenger can pass regions that are opaque to electromagnetic waves, 
thus carry information from early universe and dense environments. 

• GWs can be detected alongside multi-messenger counterparts 

• GWs are measured with time-domain information.

Gravitational Wave Astronomy
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Neutron star merger GW170817

Marica Branchesi, “multi-messenger astronomy” (2023)

• Neutron star merger events 
include signals of GW and EM 
emissions at various frequencies. 

• Multi-messenger measurements 
improve the sky localization of 
the merger event.  

• The timing information can be 
used to understand the merger 
process. Deviation from the 
astrophysical model also probe 
new physics.
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Propagation Time

• Lightning: light + sound signals 

• Propagation time of light and sound tells 
us about properties of the medium
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Propagation Time

We can use GW timing to probe new physics that modifies  
the propagation speed of GWs — property of DM halo
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DM halo

GWs



Wave Dark Matter

ℒ ⊃ 1
2 ∂μϕ∂μϕ − m

2 ϕ2 − λϕ4

We study a wave DM model with self-interactions,

in the BEC halo, repulsive self-interaction balances  
the gravitational attraction to keep the system stable.

9

see JiJi Fan, 2016 Phys. Dark Univ.  
for model building of repulsive forceThe DM self-interaction from  is repulsive when .λϕ4 λ > 0
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Wave Dark Matter

ℒ ⊃ 1
2 ∂μϕ∂μϕ − m

2 ϕ2 − λϕ4

10−22 eV ≲ m ≲ 1eV

ρ(r) = ρ0
sin(π r/R)

π r/R

R =
πMpl λ

m2

We study a wave DM model with self-interactions,

in the BEC halo, repulsive self-interaction balances  
the gravitational attraction to keep the system stable.

Mass range of wave DM:
structures at small scales occupation number

Density profile:

R=10 kpc
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* note this is still different from fuzzy DM

see JiJi Fan, 2016 Phys. Dark Univ.  
for model building of repulsive forceThe DM self-interaction from  is repulsive when .λϕ4 λ > 0

form Bose-Einstein condensate



In-medium effect

Like photon propagation with a reduced phase velocity in medium, the scattering of GWs  
with long wavelength DM particles excite massless phonon modes in the BEC halo.

Bhupal Dev, Manfred Lindner, Sebastian Homer, 2017 PLB
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In-medium effect
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Bhupal Dev, Manfred Lindner, Sebastian Homer, 2017 PLB

Effectively, GWs get a modified refractive index  when in the BEC halong > 1

δng ≡ ng − 1 = 3
2

3 m6 ρBEC ζ( 3
2 )2

8 π λ 3
2 h4 ω4

GW M6
pl

GW strain and frequency

DM mass & density

coupling

Like photon propagation with a reduced phase velocity in medium, the scattering of GWs  
with long wavelength DM particles excite massless phonon modes in the BEC halo.
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vGW = c
1 + δng

< c

The speed of GW is slower than the speed of light in BEC,

Delay of GW arrival time:  Δt ≃ t × δng

Bhupal Dev, Manfred Lindner, Sebastian Homer, 2017 PLB
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fGW=10 Hz, h=10-22

fGW=10 Hz, h=10-23
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•  is needed for repulsive 
interactions, but a large  suppress the 
time delay effect. 

• top-left: the core size can be too large to 
fit dwarf galaxy observations. Might be 
alleviated for sub-fraction DM. 

• lower-right: the relaxation time scale is 
longer than the age of the Universe.
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DM parameters

refractive index deviation: δng = 3
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Signal: GW-GW Timing

MW halo 
vGW < c

GW1

GW2
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• Choose a binary event where GWs 
from the inspiral phase and the 
merger phase are observed. 

• Compare time delay between the 
inspiral GWs and the merger GWs.

merger



The frequency and strain of a GW event are evolving with time,

• Both the frequency and the strain 
increase with time from the 
inspiral phase to the merger phase. 

• Since , the wave 
DM effect is stronger (more time 
delay) in the inspiral phase, 
compared to the merger phase. 

• We can compare GWs emitted 
during different time of a single 
event to test the effect.

δng ∝ h−4 f −4
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GW-GW timing

M1=38.9 M☉, M2=31.6 M☉
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Let’s first look at the strain evolution without the time delay, shape is similar to production

inspiral merger
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GW-GW timing
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GW-GW timing
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Strong BEC effect may completely change the temporal relation of a GW event  
when it is observed. Interesting feature for the matched filtering of LIGO data.

merger GWs arrive 
 before inspiral GWs

inspiral merger

preliminary
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Signal: GW-photon timing 

26

EM

GWMW halo 
vGW < c

NS merger • Choose a neutron star merger event 
where both EM and GW emissions 
are observed. 

• Compare time delay of the GWs 
compared with the speed of light 
(timestamp from photons)



GW-photon timing
Timing delay between GW and photon from binary neutron star events at different directions

GC

preliminary
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GW-photon timing
Timing delay between GW and photon from binary neutron star events at different directions

xϕ ≡ 3
2

3 m6 ζ( 3
2 )2

8 π λ 3
2 M6

pl

For a BNS event from the direction (b,l), 
time delay is proportional to the integral of the 

DM density along the line-of-sight

Δt(b, l) h4 ω4
GW =

xϕ

c ∫
smax

0
ds ρBEC(b, l, s)

independent of DM density30

GC

preliminary



Halo Tomography

Δt(b, l) h4 ω4
GW =

xϕ

c ∫
smax

0
ds ρBEC(b, l, s)

Time delay of events from different directions are anisotropic  
because earth is not located at the center of the galaxy.

line-of sight integral similar to the 
J-factor in indirect detection observation

GW
EM
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Halo Tomography

Δt(b, l) h4 ω4
GW =

xϕ

c ∫
smax

0
ds ρBEC(b, l, s)

Time delay of events from different directions are anisotropic  
because earth is not located at the center of the galaxy.

line-of sight integral similar to the 
J-factor in indirect detection observation

a new method to probe halo profile 
through comparing time delay of BNS 

events from different directions

GW
EM
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Halo Tomography

• Largest time delay coming from GC 
direction—higher DM density 
                

•  deviation from the GC 
direction can be seen within a set of 
binary NS events. 

• Feature of DM-induced effects from 
the correlation to the MW halo.

Δt ∝ ρBEC

𝒪(10%)

Anisotropy of time delay  
(percentage compared to the GC direction)
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R=150 kpc

R=10 kpc
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Choose different halo profile
• The anisotropy also depends on the halo 

density profile, especially the 
characteristic radius scale . 

• Larger anisotropy is observed for a 
smaller  value; but  
effect still available with . 

• Time delay effect can still be induced 
when the wave DM relic abundance is a 
sub-fraction of total DM. New method to 
probe the wave DM component. 

• Precise timing and localization of future 
GW observation and GRB observation 
are needed.

R

R = 10 kpc 𝒪(10%)
R ≃ 150 kpc
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characteristic radius scale . 
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smaller  value; but  
effect still available with . 

• Time delay effect can still be induced 
when the wave DM relic abundance is a 
sub-fraction of total DM. New method to 
probe the wave DM component. 

• Precise timing and localization of future 
GW observation and GRB observation 
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Choose different halo profile



Summary

• Gravitational Wave astronomy opens new opportunities to probe new physics with 
precise measurements of the GW timing and localization. 

• Propagation of GWs in the DM halo can probe the nature of DM. Wave DM can induce 
an effective refractive index for GWs, which causes a delay in the arrival time of GWs. 

• We study time-delay between GWs of different frequencies and strain strengths, and 
time-delay between GW and EM waves. If positive signals are detected, the directional 
distribution measures the DM halo density profile. 

Thank you!
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