Addressing the Axion Quality Problem

K.S. Babu

Oklahoma State University

Mitchell Conference on CD&NP
Texas A&M University, College Station
May 23-26, 2024

Credits

Talk based on work done in collaboration with:

Bhaskar Dutta and Rabi Mohapatra (paper forthcoming)

Discussions started at Mitchell Conference 2023

Supported by the US Department of Energy

.

The Strong CP Problem

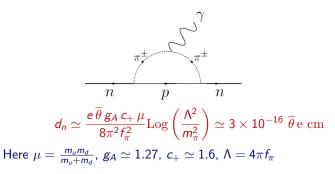
 Strong interactions appear to conserve Parity (P) and Time Reversal (T) symmetries, and therefore also CP symmetry. However, QCD Lagrangian admits a source of P and T violation:

$$\mathcal{L}_{\mathrm{QCD}} = -rac{1}{4} G_{\mu
u} G^{\mu
u} + heta_{QCD} rac{g_s^2}{32\pi^2} G_{\mu
u} ilde{G}^{\mu
u} + \overline{q} \left(i \gamma^{\mu} D_{\mu} - m_q e^{i heta_q \gamma_5}
ight) q$$

- A chiral rotation on the quark field, $q \to e^{i\alpha\gamma_5/2}q$, can remove the phase of the quark mass as $\theta_q \to \theta_q \alpha$. Due to the anomalous nature of this rotation, θ_{QCD} also changes to $\theta_{QCD} \to \theta_{QCD} + \alpha$
- The parameter

$$\overline{\theta} = \theta_{QCD} + \theta_{q}$$

is invariant, and is physical


With multiple flavors of quarks, the invariant physical parameter is

$$\overline{\theta} = \theta_{QCD} + \operatorname{ArgDet}(M_Q)$$

• $\overline{\theta}$ contributes to neutron Electric dipole moment (EDM)

Neutron EDM from $\overline{\theta}$

• In presence of $\overline{\theta}$ neutron will develop an EDM:

- From $d_n < 1.8 \times 10^{-26}$ e cm, one obtains $\Rightarrow \overline{\theta} < 10^{-10}$
- A lack of understanding of the extreme smallness of $\overline{\theta}$ is the strong CP problem
- Setting $\overline{\theta}$ to zero is unnatural, since weak interactions require $\mathcal{O}(1)$ CP violation in that sector

Axion Solution to Strong CP Problem

- The Peccei-Quinn (PQ) mechanism, which leads to a light pseudoscalar particle, the axion (a), is an elegant solution to the strong CP problem
- The PQ mechanism assumes a global $U(1)_{PQ}$ symmetry that has a QCD anomaly. This U(1) is spontaneously broken by a Higgs scalar, and also explictly by the QCD anomaly term
- Axion is the pseudo-Goldstone boson associated with the $U(1)_{PQ}$ symmetry breaking. The QCD anomaly induces a coupling of axion to the gluon field so that

$$\mathcal{L} = rac{g_s^2}{32\pi^2} \left(\overline{ heta} + rac{a}{f_a}
ight) G_{\mu
u} ilde{G}^{\mu
u}$$

• QCD also induces a potential for the axion field, which upon minimization dynamically sets $\frac{\overline{\theta}}{f} + \frac{a}{f_0} = 0$

Axion and the PQ Mechanism

• The Lagrangian for a PQ symmetric theory contains the terms

$$\mathcal{L} = \left(\frac{g_s^2}{32\pi^2}\right)\frac{a}{f_a}G_{\mu\nu}\tilde{G}^{\mu\nu} - \lambda(|\Phi|^2 - f_a^2)^2 - \Lambda^4\cos\left(\frac{\textit{Na}}{f_a}\right),$$

- Note that $\overline{\theta}$ has been absorbed into the dynamical axion field a which is the phase of Φ : $\Phi = \frac{(\rho + f_a)}{\sqrt{2}} e^{i \frac{a}{f_a}}$
- Here Λ is the QCD scale, N is an integer ≥ 1 related to the QCD anomaly coefficient, and f_a is the axion decay constant.
- Minimizing the potential leads to a = 0, which thus solves the strong CP problem

Axion Quality Problem

- Quantum gravity is expected to break all global symmetries, including $U(1)_{PQ}$. This gives rise to the axion quality problem
- For example, a gravity-induced term in the Higgs potential,

$$V_{gravity} = \frac{\kappa}{M_{\rm Pl}} |\Phi|^4 (e^{i\delta} \Phi + h.c.)$$

would shift the vacuum value a = 0

 Minimizing the potential in presence of the quantum gravity correction one has

 $\overline{ heta} \simeq rac{\kappa \sin \delta}{2\sqrt{2}} rac{f_a^5}{\Lambda^4 M_{
m Pl} N^2}$

• For currently favored values of $f_a=(10^9-10^{12})$ GeV, with $\Lambda\simeq 200$ MeV and $M_{\rm Pl}=1.22\times 10^{19}$ GeV, one finds the limits

$$\kappa \sin \delta \le \{10^{-38} - 10^{-53}\}$$

This is rather severe, much worse than the strong CP problem itself!
 Holman et. al. (1992); Kamionkowski, March-Russell (1992); Barr, Seckel (1992); Ghigna, Lusignoli, Roncadelli (1992)

Attempts to Solve the Quality Problem

• Attempts to solve the axion quality problem have used gauge symmetries with an accidental global U(1), composite axion, and discrete gauge symmetries

```
Barr, Seckel (1992); Randall (1992); Babu, Gogoladze, Wang (2003),...
```

- Realizing accidental PQ symmetry from a gauge symmetry is nontrivial, since PQ symmetry should have a QCD anomaly, but the original gauge symmetry has no anomaly
- In the rest of the talk I shall present our attempts to construct such models and discuss briefly phenomenology of successful models

Accidental PQ From Gauged U(1)

• Standard Model is extended with a gauged $U(1)_a$. All SM particles are neutral under this $U(1)_a$. Vectorlike fermions are added which carry axial $U(1)_a$ charges:

New fermion	$SU(3)_c \times SU(2)_L \times U(1)_Y$	$U(1)_a$ charge
$(Q_L)_{1,2,3}$	(3,1,y)	(1, 1, -2)
$(Q_R)_{1,2,3}$	(3,1,y)	-(1,1,-2)
$(N_R)_{1,2,3}$	(1, 1, 0)	(1,3,-4)
New scalar	$SU(3)_c \times SU(2)_L \times U(1)_Y$	$U(1)_a$ charge
T	(1, 1, 0)	4
S	(1,1,0)	2/n

- All anomalies cancel, including $[U(1)_a]^3$ via the singlet fermions
- Axial nature of $U(1)_a$ charges implies that $U(1)_Y \times [U(1)_a]^2$ anomaly cancels for any hypercharge y
- n is an integer with n ≥ 5. This choice guarantees quality of the axion

High Quality Axion

- Model has two global U(1)s, one acting on (Q_3, T) and another acting on $(Q_{1,2}, S)$. Each has a QCD anomaly
- Thus there are two Goldstone bosons, one eaten up by the $U(1)_a$ gauge boson, with the other identified as the axion
- Axion is orthogonal to Goldstone:

$$G = \frac{\left(\frac{2}{n}f_{S}\eta_{S} + 4f_{T}\eta_{T}\right)}{\sqrt{(4f_{T})^{2} + (\frac{2}{n}f_{S})^{2}}}, \quad a = \frac{\left(4f_{T}\eta_{S} - \frac{2}{n}f_{S}\eta_{T}\right)}{\sqrt{(4f_{T})^{2} + (\frac{2}{n}f_{S})^{2}}}$$

Here
$$S=rac{(
ho_S+f_S)}{\sqrt{2}}e^{i\eta_S/f_S}$$
 and $T=rac{(
ho_T+f_T)}{\sqrt{2}}e^{i\eta_T/f_T}$ are used

• Yukawa interactions of S and T generate vectorlike quark masses:

$$-\mathcal{L}_{\mathrm{Yuk}} = Y_3 \, \overline{Q}_{3L} Q_{3R} T^* + Y_{1,2} \, \overline{Q}_{1,2,L} Q_{1,2,R} \, \frac{S^n}{(M_*)^{(n-1)}} + h.c.$$

• Axion decay constant f_a can be worked out to be

$$f_a = \frac{f_T f_S}{\sqrt{4f_T^2 n^2 + f_S^2}}$$

High Quality Axion - cont.

- This model is a KSVZ type axion model, but with high quality axion
- The leading quantum gravity correction that can destabilize the axion potential is

$$V_{
m gravity} = rac{\kappa e^{i\delta} S^{2n} T^*}{M_{
m Pl}^{2n-3}} + h.c.$$

• The induced $\overline{\theta}$ is

$$\overline{\theta} \simeq \frac{\kappa \sin \delta}{(\sqrt{2})^{(2n-1)}} \frac{f_S^{2n} f_T}{\Lambda^4 M_{\text{Pl}}^{2n-3}}$$

- For $f_S = f_T = f_a \sqrt{1 + 4n^2}$, and with n = 5, $f_a = 10^{10}$ GeV, one has $\overline{\theta} \sim 7 \times 10^{-12}$. If $f_a = 10^{12}$ GeV is used, n = 7 gives $\overline{\theta} \sim 10^{-12}$, showing the high quality, all for $\kappa \sin \delta = 1$
- Since y of vectorlike quarks is free, one can choose y=2/3 or y=-1/3 in which case these quarks mix with the usual quarks and there won't be stable heavy quarks

Generalization to a Family of Models

A family of models can be found as extensions of the model.
 m+1 vectorlike quarks are used:

New fermion	$SU(3)_c \times SU(2)_L \times U(1)_Y$	$U(1)_a$ charge
$(Q_L)_{1,2,3,,m,m+1}$	(3,1,y)	(1,1,1,1,-m)
$(Q_R)_{1,2,3,,m,m+1}$	(3,1,y)	-(1,1,1,1,-m)
$(N_R)_{1,2,3}$	(1, 1, 0)	(-1+m, 1+m, -2m)
New scalar	$SU(3)_c \times SU(2)_L \times U(1)_Y$	$U(1)_a$ charge
T	(1, 1, 0)	2 <i>m</i>
5	(1, 1, 0)	2/n

- All anomalies cancel, with the previous model being m=2 case
- Axion field is given as

$$a = \frac{\left(2mf_T\eta_S - \frac{2}{n}f_S\eta_T\right)}{\sqrt{(2mf_T)^2 + (\frac{2}{n}f_S)^2}}, \quad f_a = \frac{f_Tf_S}{\sqrt{f_T^2m^2n^2 + f_S^2}}$$

- This leads to a high quality KSVZ type axion. For $m \ge 9$, n = 1 can be chosen, whence all quarks acquire mass at renormalizable level
- Couplings of axion to nucleon and electron are same as KSVZ

Domain Wall Number

- In KSVZ model, with one flavor of quarks, the number of domain walls in $N_{DW} = 1$, which is not cosmologically stable and thus harmless Sikivie (1982)
- In the present model there are 3 or more flavors, but N_{DW} = 1 nevertheless.
- When axion field is a mixed combination of fields in presence of a gauge symmetry, N_{DW} needs careful consideration:

$$N_{\mathrm{DW}} = \mathrm{minimum\ integer}\left\{rac{1}{f_a}\sum_{i}n_i\,c_i\,v_i\;,\quad n_i\in\mathcal{Z}
ight\},\ a = \sum_{i}c_ia_i$$

Ernst, Ringwald, Tamarit (2018)

SO(10) Model with Gauged U(1) and Axion

- Unified $SO(10) \times U(1)$ can lead to high quality axion
- The attractive features of SO(10) GUT are preserved, including coupling unification and predictive fermion spectrum
- The fermion content and transformation under $SO(10) \times U(1)$:

$$\left\{3\times 16_{1}+1\times 10_{-6}+1\times 1_{12}\right\}+\left\{2\times 1_{-4}+1\times 1_{8}\right\}$$

- All gauge anomalies cancel. Some resemblance to E_6 charges
- Higgs sector contains the usual SO(10) fields and two singlets:

$$\{10_H(-2)+\overline{126}_H(-2)+45_H(0) \text{ or } 54_H(0)+10'_H(0)+T(1_{+1})+S(1_{12})\}$$

• New features are the two singlet scalars T,S and a real $10'_H$. The $10'_H$ is needed to avoid weak scale axion

High Quality SO(10) Axion

Yukawa couplings:

$$\begin{split} \mathcal{L}_{\mathrm{Yuk}} &= Y_{10} 16 \, 16 \, 10_H + Y_{126} 16 \, 16 \, \overline{126}_H + y_{10} 10_{-6} 10_{-6} S_{12} \\ &+ y_{10}' 10_{-6} 1_8 \, 10_H + 1_{12} 1_{12} \frac{(S^*)^2}{M_{\mathrm{Pl}}} + h.c. \end{split}$$

- Realistic fermion masses are induced, including exotics
- Model has two decoupled sectors, one with 16-fermions, and one with 10-fermion. This results in accidental PQ symmetry
- · Leading correction to PQ symmetry from gravity is

$$V\supset \frac{T^{12}S^*}{M_{\rm Pl}^9}$$

- Resulting shift in $\bar{\theta}$ is highly suppressed. $f_a < 2 \times 10^{11}$ GeV is required for quality. Domain wall number
- $N_{DW} = 1$ in the model

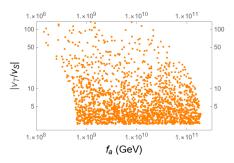
High Quality SO(10) Axion - cont.

Axion field is orthogonal to pseudoscalars and Goldstones

$$\begin{array}{lcl} a & \simeq & 1/\sqrt{1+\frac{144v_S^2v^2}{X}}\left(\eta_S-12v_Tv_Sv^2\eta_T/X\right)+...\\ \\ f_a & = & v_S/\sqrt{1+\frac{144v_S^2v^2}{X}}\\ X & = & v_T^2v^2+4\tilde{v}^2(v_u^{02}+v_d^{02})+16v_u^{02}v_d^{02} \end{array}$$

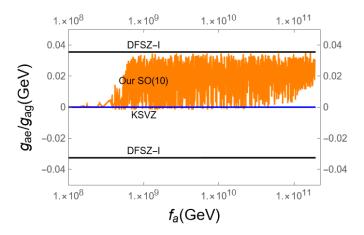
 Axion coupling to fermions are modified compared to DFSZ or KSVZ models:

$$\mathcal{L}(f,a) = i \frac{m_u}{f_a} \left[\frac{24v_S^2(2v_d^{0^2} + \tilde{v}^2)}{X + 144v_S^2v^2} \right] \bar{u}\gamma_5 u a + i \frac{m_d}{f_a} \left[\frac{24v_S^2(2v_u^{0^2} + \tilde{v}^2)}{X + 144v_S^2v^2} \right] \bar{d}\gamma_5 da$$

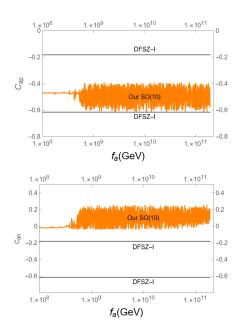

$$+ i \frac{m_e}{f_a} \left[\frac{24v_S^2(2v_u^{0^2} + \tilde{v}^2)}{X + 144v_S^2v^2} \right] \bar{e}\gamma_5 e a$$

An upper limit on f_a in SO(10) model

• The induced $\overline{\theta}$ from quantum gravity is


$$\overline{ heta} \simeq rac{\kappa \sin \delta}{2^{(11/2)}} \sqrt{1 + rac{144 v_S^2}{v_T^2}} rac{v_T^{12} f_a}{\Lambda^4 M_{
m Pl}^9}$$

• This sets a limit $f_a < 2 \times 10^{11}$ GeV



Axion couplings to electron in SO(10) model

Ratio of electron coupling of axion versus gluon coupling:

Axion couplings to proton and neutron in SO(10)

Conclusions

- Two classes of models presented which have an accidental PQ symmetry
- In one class, SM $\times U(1)$ resulted in high quality axion which is similar to KSVZ model
- N_{DW} = 1 in these models for domain wall number, causing no cosmological issues
- A second class in within the framework of SO(10) unification. It leads to a hybrid KSVZ-DFSZ axion with high quality
- $N_{DW} = 1$ in these models without cosmological problems
- Axion couplings to fermions can potentially distinguish these models from standard benchmarks
- In all cases there is room for the axion to be the entire dark matter content of the universe