

Long-lived Particles at the LHC

Todd Adams Florida State University

Collider, Dark Matter, and Neutrino Physics 2024 May 25, 2024

Why search for long-lived particles at the LHC?

Why search for long-lived particles at the LHC?

Because we can!

A.

Many reasons to "expect" long-lived particles

- Standard model has lots of long-lived particles
 - muons, charged pions, kaons, neutrons, lambdas, b-hadrons
- Several mechanisms
 - small mass splittings \rightarrow long lifetime: ex. n \rightarrow p e- nu
 - small couplings \rightarrow long lifetime
 - hidden valleys/dark sectors
- Earlier searches may have missed BSM LLPs

Rich LHC program

- Example searches
 - displaced vertices
 - late arriving particles
 - highly ionizing
 - non-pointing photons/jets
 - displaced jets

• ...

Heather Russell [hep-ex] 1903.04497

CHArged Massive Particles (CHAMPs)

- Key SLOW-MOVING
 - longer time-of-flight + highly ionizing
- Interpretations
 - lepton-like
 - hadron-like
 - lifetime
 - Z'

– – Neutral Hadron (e.g. Neutron)

----Photon

May 25, 2024

Previous ATLAS Result

- Search based on large dE/dx in pixel detection
- Reconstruct mass based on dE/dx and p
- Excess in high-dE/dx + high mass (m>1 TeV)
- Observed 7 events at high mass
- Expected 0.7 ± 0.4 events
- $3.6\sigma(3.3\sigma)$ local(global) excess of events
- Directly measured time-of-flight is generally consistent with $\beta = 1$

New ATLAS CHAMPs Result

- Determine $\beta\gamma$ two ways
 - dE/dx in silicon pixel detector
 - time-of-flight to hadron calorimeter
- Use $\beta\gamma$ to calculate two masses
- Interpretation in terms of lifetime

Inconsistent with previous excess being from slowmoving CHAMPs

Observed: 6 events

3.7 +/- 0.4 expected

ATLAS-CONF-2023-044

CMS CHAMPs Result

- Two analyses:
 - pixel dE/dx vs. strip dE/dx
 - mass calculation
- No excess observed in either analysis
- Assume "stable"

May 25, 2024

CMS-PAS-EXO-18-002

New Interpretation

- Giudice, G.F., McCullough, M. & Teresi, D., dE/dx from boosted long-lived particles. JHEP 2022, 12 (2022). [link]
 - Suggested previous ATLAS excess could be explained by <u>fast-moving</u>, <u>multiply charged</u> particles
 - large dE/dx with beta ~ 1

• $Z' \rightarrow X^{++}X^{--}$ ("stable" X)

t1

Spurious

Genuine showering

Genuine muon

Disappearing Tracks

• Similar to CHAMPs search, but look for decay

 $E_{\text{rents/bin}}^{\text{full}}$ Events/bin 10^4

Data/Expected

CMS

T6tb(1000,900), cτ=10 cm

T5btbt(1500,1100), cτ=10 cm

20

15

25

30

- Charged track "disappears"
- Use high dE/dx
- Divide into 50 regions
- No excess observed
- Future work needed to combine "stable" and "disappearing" analyses
 - ATLAS already allows both together

[hep-ex] 2309.16829

CMS

Now consider neutral particles decaying in flight

Light, long-lived particles

- light particles decaying to hadrons
- boosted decision tree (≥2 displaced jets)
- six signal regions

Light, long-lived particles (II)

- Light particle (S) decaying to (displaced) jets or taus
- No excess
- First tracker-based displaced tau result
- $S \rightarrow bb$ limits outperform previous CMS results

Run 3 analysis

$LLPs \rightarrow two muons$

- ≥1 displaced muon with pT > 10 GeV
- New trigger developed for Run 3
- Multiple signal regions
- Smaller dataset outperforms previous result due to improved trigger

Dark photons – Higgs via VBF

[hep-ex] 2311.18298 ATLAS

- Vector boson fusion (VBF) production of Higgs which decays via dark sector
- Dark photon jet (DPJ) \rightarrow collimated fermions
- Three signal regions
 - muon-jet + calo-jet/low MET + calo-jet/high MET
- No significant excess observed

See talk by Luca Lavezzo from earlier today Sat May 25

May 25, 2024

$H \rightarrow aa \rightarrow 4\gamma$

- a = axion-like particles
- Small coupling \rightarrow long lifetime
- a $\rightarrow \gamma + \gamma$ (may be collimated)
- Long-lived and prompt
- No excess observed

138 fb⁻¹ (13 TeV)

See talk by Kevin Pedro from Thurs May 23

- Use neural networks to identify EJs
- Require at least 2 EJs

Emerging Jets

- 16 signal regions used
- No significant excess observed

Q_{dark} X_{dark} ത്ത്ത X_{dark}^{\dagger} $\overline{\mathbf{Q}}'_{\text{dark}}$

MoEDAL Results

- Detector located near LHCb
- Studies of High Electric Charge Objects (HECOs) and magnetic monopoles
- Two papers so far no excess

Mitchell 2024 - Long-lived Particles at the LHC - T. Adams

10⁵

10⁴

10³

10²

10

1

10⁻¹

10⁻²

10⁻³

MoEDAL

N

1000

2000

3000

6000

5000

4000

7000

Mass [GeV]

8000

[hep-ex] 2311.06509 **MoEDAL**

 $\sqrt{s} = 13 \text{ TeV}, 6.46 \text{ fb}^{-1}$

MoEDAL

FASER Dark Photons

- Forward Search Experiment
- 480 m downstream of ATLAS
- Started data taking in July 2022
- First results on searches for dark photons

See talk by Roshan Mammen Abraham from Thursday May 23

ATLAS SUSY Searches* - 95% CL Lower Limits

 10^{-4}

10⁻²

 10^{-1}

 10^{-3}

10-

10⁻⁵

Mitchell 2024 - Long-lived Particles at the LHC - T. Adams

25-35 GeV

Anv

5-8 GeV

40 GeV

10²

10

 10^{3}

cτ [m]

15-20 GeV

45-60 GeV

 $H \rightarrow XX(10\%), X \rightarrow b\bar{b}, m_H = 125 \text{ GeV}, m_X = 40 \text{ GeV}$

dark QCD, $m_{X_{task}} = 1500 \text{ GeV}$, $m_{\pi_{task}} = 10 \text{ GeV}$, agonstic

dark QCD, $m_{X_{task}} = 1500 \text{ GeV}$, $m_{\pi_{task}} = 10 \text{ GeV}$, GNN

 $H \rightarrow XX(10\%), X \rightarrow \tau\tau, m_H = 125 \text{ GeV}, m_X = 7 \text{ GeV}$

 $H \rightarrow XX(10\%), X \rightarrow b\bar{b}, m_{H} = 125 \text{ GeV}, m_{X} = 40 \text{ GeV}$

 $H \rightarrow XX(10\%), X \rightarrow d\bar{d}, m_H = 125 \text{ GeV}, m_X = 40 \text{ GeV}$

 $H \rightarrow XX(10\%), X \rightarrow \tau \tau, m_H = 125 \text{ GeV}, m_X = 40 \text{ GeV}$

10³

137 fb-1

137 fb⁻¹

138 fb⁻¹

138 fb⁻¹

35 fb⁻¹ (13.6 TeV)

35 fb⁻¹ (13.6 TeV)

35 fb⁻¹ (13.6 TeV)

2107.04838 (Hadronic decays in CSCs)

003-0.3 m

 10^{-1}

cτ [m]

0.001-0.5 m

10¹

2107.04838 (LLP decays in CSCs)

 10^{-3}

2403.01556 (Emerging jet + jet)

raina jet +

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included). The y-axis tick labels indicate the studied long-lived particle.

10-7

CMS-PAS-EXO-23-013 (Displaced lets Run3)

CMS-PAS-EXO-23-013 (Displaced Jets Run3)

10-5

CMS-PAS-EXO-23-013 (Displaced Jets Run3)

ATLAS Preliminary

Summary

Summary

- Expand LHC searches through long-lived particles
- New triggers + new algorithms
- Sophisticated analysis strategies
- More analyses than time to present
- More to come