BSM Physics at Gravitational Wave Detectors

Mitchell Workshop 2024

Kuver Sinha University of Oklahoma

Data's coming, folks

Data's coming, folks

How do we leverage this to explore BSM physics?

BSM choices

Do you want to study BSM at the source?

or (and?)

Do you want to study BSM in what happens on the way?

BSM at the Source

Source itself is due to BSM physics (phase transitions)

Source is astrophysical, BSM exchange deforms signal

Source is astrophysical, probes BSM in its environment

Source is astrophysical, serves as a clock (multimessenger)

Source: Phase Transition

Take the simplest template (xSM) and obtain robust GW predictions

mass resummation in thermal field theory

modeling of relativistic hydrodynamics for sound waves in plasma

needs a lot of work

H. Guo, J.No, F. Hajkarim, KS, G. White (JHEP06 2021)
H. Guo, KS, G. White, D. Vagie (JHEP06 2021)
H. Guo, KS, G. White, D. Vagie (JCAP01 2021)

Take various particle physics models and obtain GW predictions

deformed Higgs sectors, extra scalars, SSB of gauge groups, etc.

connect to dark sectors, baryogenesis, flavor physics, etc.

lots of interesting work by our community!

Check out Dorival Goncalves's talk

A. Alves, T. Ghosh, D. Goncalves, H. Guo, KS (JHEP03 2020)
A. Alves, T. Ghosh, H. Guo, KS (JHEP04 2019)
A. Alves, T. Ghosh, H. Guo, KS (JHEP12 2018)

Workflow: Phase Transitions

Uncertainties in Phase Transition Calculations

Complementarity

$$V(H,S) = -\mu^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2 + \frac{a_1}{2} H^{\dagger} H S + \frac{a_2}{2} H^{\dagger} H S^2 + \frac{b_2}{2} S^2 + \frac{b_3}{3} S^3 + \frac{b_4}{4} S^4$$

A. Alves, T. Ghosh, D. Goncalves, H. Guo, KS (PLB818 2021)
A. Alves, T. Ghosh, D. Goncalves, H. Guo, KS (JHEP03 2020)
A. Alves, T. Ghosh, H. Guo, KS (JHEP04 2019)
A. Alves, T. Ghosh, H. Guo, KS (JHEP12 2018)

Source itself is due to BSM physics (phase transitions)

Source is astrophysical, BSM exchange deforms signal

Source is astrophysical, probes BSM in its environment

Source is astrophysical, serves as a clock (multimessenger)

Binary Inspiral

Binary inspirals can serve as probes of light dark mediators, under the assumption that they accumulate dark charge

The wavelength of the mediator that can be probed is primarily fixed by the length scale of the binary system

$$ec{F}_{ ext{total}} = rac{GM_1M_2}{r^2} [1 + ilde{lpha}' e^{-m_V r} (1 + m_V r)],$$

time evolution of orbital frequency

$$\begin{aligned} \frac{d\omega}{dt} &= -\frac{32}{5} G \,\mu \,\omega^5 \,r^2 \,g \,\mathcal{N}^{-1}.\\ g &= -\frac{3 + \tilde{\alpha}' e^{-m_V r} \left(3 + m_V r (3 + m_V r)\right)}{1 + \tilde{\alpha}' e^{-m_V r} \left(1 + m_V r (1 - m_V r)\right)} \end{aligned}$$

Multimessenger studies needed since rescaling the binary component masses can mimic the dark force

$$F_{TOTAL} = \frac{GM_1'M_2'}{r^2}$$

Reverberation mapping, dynamical tracers

Bhalla, KS, Xu (2024)

 $h_{o,2} = \sqrt{\frac{32}{5}} \frac{\eta G M_2}{d_L} (G M_2 \omega)^{2/3} \mathcal{H}_{o,2}.$ $10^{\circ} \qquad 10^{\circ} \qquad 10^{\circ$

$$h_{c,m} \equiv h_{o,m} \sqrt{2 f_{\mathrm{GW},m}^2 / \dot{f}_{\mathrm{GW},m}}$$

EMRIs, Dark Forces

The rms amplitude of the GW emitted for the dominant m=2 mode $\sqrt{22}$

Source itself is due to BSM physics (phase transitions)

Source is astrophysical, BSM exchange deforms signal

Source is astrophysical, probes BSM in its environment

Source is astrophysical, serves as a clock (multimessenger)

Binary Probes Environment

A stellar black hole or neutron star will accumulate a dark matter spike around it

The spike distorts the GW waveform from binary inspiral: "dark dressed black holes"

Kavanaugh, Bertone et.al. (2020 -)

SMBH binaries exist at the centers of merging galaxies

In a sense, you can think of NANOGrav is an instrument for probing galactic centers

SMBH binaries inspire an "existence problem": why do they exist and how did they get so close?

The seed problem (exacerbated by JWST) and the final parsec problem

Can you speed up accretion? How about bigger seeds? PBH seeds don't work...

Final parsec: dynamical friction increased by SIDM? BEC 3-body encounters?

Bromley, Sandick, Shams Es Haghi (2023) Alvarez, Cline, Dewar (2024)

Source itself is due to BSM physics (phase transitions)

Source is astrophysical, BSM exchange deforms signal

Source is astrophysical, probes BSM in its environment

Source is astrophysical, serves as a clock (multimessenger)

Neutron Star Mergers

GW signal sets an alarm clock t=0 If your BSM signal has time dependence from moment of emission (eg due to decay lifetime), use multiessenger studies

The energy of your emission dictates facility you want to use

Observatory	IIT Date	Time since GW Trigger	90% Flux Upper Limit (erg cm $^{-2}$ s $^{-1}$)	Eneroy Rond
50501 valor y		This since GW Higger	(015 011 5)	Linergy Dalid
Insight-HXMT/HE	Aug 17 12:34:24 UTC	-400 s	3.7×10^{-7}	0.2–5 MeV
CALET CGBM	Aug 17 12:41:04 UTC	0.0	1.3×10^{-7a}	10-1000 keV
Konus-Wind	Aug 17 12:41:04.446 UTC	0.0	$3.0 \times 10^{-7} \text{ [erg cm}^{-2}\text{]}$	10 keV-10 MeV
Insight-HXMT/HE	Aug 17 12:41:04.446 UTC	0.0	3.7×10^{-7}	0.2–5 MeV
Insight-HXMT/HE	Aug 17 12:41:06.30 UTC	1.85 s	6.6×10^{-7}	0.2-5 MeV
Insight-HXMT/HE	Aug 17 12:46:04 UTC	300 s	1.5×10^{-7}	0.2-5 MeV
AGILE-GRID	Aug 17 12:56:41 UTC	0.011 days	3.9×10^{-9}	0.03-3 GeV
Fermi-LAT	Aug 17 13:00:14 UTC	0.013 days	4.0×10^{-10}	0.1–1 GeV
H.E.S.S.	Aug 17 17:59 UTC	0.22 days	3.9×10^{-12}	0.28-2.31 TeV
HAWC	Aug 17 20:53:14—Aug 17 22:55:00 UTC	0.342 days + 0.425 days	1.7×10^{-10}	4-100 TeV
Fermi-GBM	Aug 16 12:41:06-Aug 18 12:41:06 UTC	± 1.0 days	$(8.0-9.9) \times 10^{-10}$	20–100 keV
NTEGRAL IBIS/ISGRI	Aug 18 12:45:10-Aug 23 03:22:34 UTC	1-5.7 days	$2.0 imes 10^{-11}$	2080 keV
INTEGRAL IBIS/ISGRI	Aug 18 12:45:10-Aug 23 03:22:34 UTC	1-5.7 days	3.6×10^{-11}	80-300 keV
INTEGRAL IBIS/PICsIT	Aug 18 12:45:10-Aug 23 03:22:34 UTC	1-5.7 days	0.9×10^{-10}	468–572 keV
INTEGRAL IBIS/PICsIT	Aug 18 12:45:10-Aug 23 03:22:34 UTC	1-5.7 days	4.4×10^{-10}	572–1196 keV
INTEGRAL SPI	Aug 18 12:45:10-Aug 23 03:22:34 UTC	1-5.7 days	2.4×10^{-10}	300-500 keV
INTEGRAL SPI	Aug 18 12:45:10-Aug 23 03:22:34 UTC	1-5.7 days	7.0×10^{-10}	500-1000 keV
INTEGRAL SPI	Aug 18 12:45:10-Aug 23 03:22:34 UTC	1-5.7 days	$1.5 imes 10^{-9}$	1000-2000 keV
INTEGRAL SPI	Aug 18 12:45:10-Aug 23 03:22:34 UTC	1-5.7 days	2.9×10^{-9}	2000-4000 keV
H.E.S.S.	Aug 18 17:55 UTC	1.22 days	3.3×10^{-12}	0.27-3.27 TeV
H.E.S.S.	Aug 19 17:56 UTC	2.22 days	1.0×10^{-12}	0.31-2.88 TeV
H.E.S.S.	Aug 21 + Aug 22 18:15 UTC	4.23 days + 5.23 days	2.9×10^{-12}	0.50-5.96 TeV

Target: axions

waves

Alford, Fortin, Harris, KS (JCAP 07, 2020) Dev, Fortin, Harris, KS, Zhang (JCAP 01, 2022) Dev, Fortin, Harris, KS, Zhang (PRL 132, 2024)

Neutron Star Mergers

Multimessenger is key Localization of source is important

you're looking at a baby magnetar

generally, you want to look at near-Earth, hot, young magnetars if you want to constrain axions

Fortin, Harris, KS, + various (2017-2024)

Gau, Hajkarim, Fortin, Harris, KS (JCAP 07, 2020)

Check out Fazlollah Hajkarim's talk

1.4

1.2

Kremer et. al. (2023)

5.0

4.5

 $\log(T_{\rm eff}/{\rm K})$

Thermal

 $t \sim 10^4 \, {\rm yr}$

Dev, Fortin, Harris, KS, Walsh, Zhang (in progress)

C/O WD

 $M_1(M_{\odot})$

0.8

0.6

Stable disk mass transfer expected

1.0

0.2

C/O WD

0.4

0.2

e.g., Nelemans+2001, Ruiter+2010, Nissanke+2012, Lamberts+2019, Breivik+2020 S, Walsh, Zhang (in progress)

Binary Inspiral

 $t \sim Myr$

"Luminous giant" phase:

Carbon flame travels inward

- sources for JWST?

• R Coronae Borealis stars?

Gvaramadze+2019

Way and M31

away merger energy at Eddington luminosity $(L \sim 10^{4.5} L_{\odot})$ for ~10 kyr as

• O (10) sources expected in Milky

• If dust obscured, bright infrared

(e.g., Webbink 1984, Clayton 2012)

• J005311 — a possible candidate?

Total white dwarf binaries in Milky Way:

Total with $f_{\rm GW} > 10^{-4}$ Hz:

Total individually resolvable:

TJ Gehrman the stellar physics guru

Final Remnant

from Schwab+2016

Off-center Carbon flame ignition

3.5

3.0

4.0

 $10^{2} R_{-}$

 $\sim 5 \ge 10^8$

 $\sim 6 \times 10^7$

 $\sim 10^3$ - 10^4

Phases of Massive White Dwarf Mergers

Viscous

 $t \sim 10^4 - 10^8 \, \mathrm{s}$

 $^{4.8}$

4.6

4.4

4.2

3.8

3.6

5.5

Carbon flame reaches center

 $10^{-1} \, {
m R}_{\odot}$

 $\log(L/\mathrm{L}_{\odot})$

Dynamical

(tidal disruption)

 $t \sim 10^2 - 10^3 \text{ s}$

Envelope $(r_{env} \sim 100 R_{\odot}, T \sim 4000 - 5000 \text{ K})$ radiates

White Dwarf Mergers

GW signal sets an alarm clock t=0

look for *disappearance*

We discuss the prospect of identifying a white dwarf binary merger by monitoring disappearance of its nearly monochromatic gravitational wave. For a ten-year operation of the laser interferometer space antenna (LISA), the chance probability of observing such an event is roughly estimated to be 20%. By simply using short-term coherent signal integrations, we might determine the merger time with an accuracy of ~ 3-10 days. Also considering its expected sky localizability ~ 0.1-0.01deg², LISA might make an interesting contribution to the multi-messenger study on a merger event. Seto (2024)

or a baby super-Chandrasekhar mass star!

$$\frac{L_a}{L} \sim 1.6 \times 10^{-4} \left(\frac{g_{aee}}{10^{-13}}\right)^2 \left(\frac{M_{\rm WD}}{1M}\right) \left(\frac{T_c}{10^7 K}\right)^4$$

Dev, Fortin, Harris, KS, Walsh, Zhang (in progress)

Teddy Walsh

White Dwarf Mergers

Dan, Rosswog, Bruggen, Podsiadlowski (MNRAS, 2014)

BSM on the way

Source is BSM, deformation due to new cosmology

Source is astrophysical, deformation due to new stuff

Gameplan

Study Non-Standard Histories

Cui, Lewicki, Morrissey, Wells (2016) Gouttenoire, Servant, Simakachorn (2020)

example: source = phase transition

Figueroa et. al. (2020)

source = primordial GWs, induced GWs, etc.

Bernal, Hajkarim (2018) Domenec et. al. (2020)

Personally, I only trust modifications of the causal k^3 tail. It is universal

BSM on the way

Source is BSM, deformation due to new cosmology

Source is astrophysical, deformation due to new stuff

Gameplan

Check out Tao Xu's talk

Invitation

High f GW

N. Aggarwal et. al. (2020) V. Domcke et. al. (2020-)

Secular drift of pulsars?

DeRocco, Dror (2023)

SMBH inspirals

TJ Gehrman

PBH + baryogenesis + dark matter

TJ Gehrman, Shams, KS, Xu (*JCAP* 03 2024) TJ Gehrman, Shams, KS, Xu (*JCAP* 02 2023) TJ Gehrman, Shams, KS, Xu (*JCAP* 10 2023)

Reheating

Easther, Giblin, Lim (2006)