

Searching for scalar boson pairs at the LHC

The Mitchell Conference on Collider, Dark Matter, and Neutrino Physics College Station, Texas: May 23rd - 26th, 2024

Jason Veatch California State University Stanislaus

Talk Outline

- Overview of theoretical motivations
- How to search for scalar pair production
- Survey of experimental channels
- Experimental results and interpretations

H

The Standard Model

The Higgs Potential

 μ^2 is related to m_H, so we have measured it directly

 λ has not been measured **directly**, but the SM predicts it to be $\lambda^{SM} \sim 0.13$

The Higgs Potential Open Questions

Vacuum Stability Are we in a local or a global minimum?

Shape of the Higgs Potential

The Early Universe

- Electroweak baryogenesis can lead to O(1)
 Higgs self-coupling modifications
- Some inflation models modify the shape of the Higgs potential (Higgs couplings to gravity)

Phys. Rev. D 101, 075023 (2020)

The Higgs Potential

The Higgs potential:

$$V(h) \simeq \frac{1}{2}m_H^2 h^2 + \frac{\lambda v h^3}{4} + \frac{1}{4}\lambda h^4 + \dots$$

This is the same λ and it shows up in the Higgs boson self coupling

If we can measure the self coupling, we will know the term λ that defines the shape of the Higgs potential

If $\lambda \neq$ the SM prediction (λ^{SM}), it might indicate new physics

ggFHHProduction A tale of two diagrams

- The SM predicts the production of two Higgs bosons (HH)
- Gluon-gluon fusion (ggF) is the leading production mode at the LHC (~90% of σ_{tot})
- Vector boson fusion (VBF) is the second leading production mode
- The "triangle" diagram involves Higgs boson self-coupling
- The "box" diagram interferes, resulting in a small cross-section (~31 fb @ 13 TeV)
 - Compared to ~52 pb (@ 13 TeV) for single Higgs production

Beyond the Standard Model

Resonant HH Production

- Many BSM models predict new heavy particles that decay into HH ullet
 - 2HDM, MSSM, Kaluza-Klein models, extra dimensions, etc.
- Narrow spin-0 scalar and spin-2 gravitons used as benchmark models ullet

Resonant SH Production

- Numerous other models predict extended Higgs sectors with more scalar bosons
 - ► <u>NMSSM</u>, <u>TRSM</u>, <u>N2HDM</u>, <u>CxSM</u>, etc.
- X is a heavy scalar and S is a scalar with Higgslike couplings
- Resonant X→SH production can be found using HH search techniques
- Wide range of S decay modes means many channels could be sensitive

Jason Veatch - CSU Stanislaus

Searches

Run II Dataset

- Run II delivered 140-150 fb⁻¹ of pp collision data at 13 TeV
- Increase of ~7x in integrated luminosity and ~1.6x energy from Run I

HH/SH Decay Modes

- The small HH cross-section means multiple final states must be used
- Most of the channels shown here are now used

	bb	ww	ττ	ZZ	YY
bb	34%				
ww	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
YY	0.26%	0.10%	0.028%	0.012%	0.0005%

Available Run II Results

	4b	bbtt	bbyy	bbWW/bbll	Multilepton
EXPERIMENT	Phys. Rev. D 108 (2023) 052003 Phys. Rev. D 105 (2022) 092002 JHEP 07 (2020) 108	<u>JHEP 07 (2023) 040</u> <u>JHEP 11 (2020) 163</u>	JHEP 01 (2024) 066 Phys. Rev. D 106 (2022) 052001 Sumitted to JHEP	<u>Phys. Lett. B 801</u> (2020) 135145	<u>ATLAS-</u> CONF-2024-005 JHEP 10 (2023) 009
CMS	Phys. Rev. Lett. 129 (2022) 081802 Phys. Lett. B 842 (2023) 137392	Phys. Lett. B 842 (2023) 137531 JHEP 11 (2021) 057	<u>JHEP 03 (2021) 257</u>	Submitted to JHEP	JHEP 07 (2023) 095 JHEP 06 (2023) 130 CMS-PAS- HIG-21-014

H

bbyy A clean signature

Phys. Rev. D 106 (2022) 052001

bbγγ Signature

- A clean channel with low background
 - H→γγ decay gives a unique signature and excellent mass resolution
- Low BR of 0.26% statistically limited
- Event selection:
 - 2 photons with m_{γγ} near m_H
 - 1 or 2 b-tagged jets

bbyy Multivariate techniques

- Use Boosted Decision Trees (BDTs) to distinguish signal from background
 - Combination of BDTs trained against continuum and single Higgs bkgs
 - BDTs trained separately for each analysis category

JHEP 01 (2024) 066

bbyy **Signal extraction**

- Invariant mass distributions fit in with signal strength allowed to float •
- CMS simultaneously fits m_{yy} and m_{jj} distributions ullet

JHEP 01 (2024) 066

Run: 351223 Event: 1338580001 2018-05-26 17:36:20 CEST

bbtt Signature

- Moderately large BR with relatively low background
- Fake-τ background challenging to model
- Split analysis based on τ decay modes ($\tau_{had}\tau_{had}$ and $\tau_{lep}\tau_{had}$)
- Event selection:
 - Exactly 2 b-tagged jets or one large-R jet with 2 b-tags
 - CMS uses boosted and resolved, ATLAS uses resolved
 - Either 2 hadronic τ or 1 hadronic τ and 1 e/ μ

bbtt Complex backgrounds

bbtt Multivariate techniques

- BDTs and NNs used to distinguish signal from background
- MVA score used as final signal/background discriminant
- Fit multiple categories based on, e.g., τ decay mode (3 in ATLAS, 72 in CMS)

Phys. Lett. B 842 (2023) 137531

4b
 Plenty of signal

T

4b Signature

- Largest branching ratio
- Large QCD background
- Resolved (non-resonant and 251 GeV $\leq m_X \leq$ 1.5 TeV) and boosted (900 GeV $\leq m_X \leq$ 5 TeV) topologies are used
- Event selection:
 - 4 b-tagged jets

or

2 large-R jets with 2-4 b-tagged track jets

4b Analysis strategy

- Resolved: 4 b-tagged jets paired to construct Higgs candidates
- Boosted: 2 b-tagged large-R jets used as Higgs candidates
- Primarily data-driven background estimates
- m_{HH} used as final discriminant

Phys. Rev. D 108 (2023) 052003

	bb	\sim	ττ	ZZ	ΥY	
bb	34%					
WW	25%	4.6%				
ττ	7.3%	2.7%	0.39%			
ZZ	3.1%	^{1.1%}	0.33% D +ler	0.069%		
ΥY	0.26%	0.10 H ig	gh BR a	nd clea	an sign	ature

bb+leptons Analysis strategy

- 2 b-jets and 1 or 2 leptons and MET
- Machine learning techniques used to identify signal
- CMS uses of resolved and boosted topologies, ATLAS uses resolved

Multilepton

		bb	ww	ττ	ZZ	ΥY
The	e more	the me	rrier			
	ww	25%	4.6%			
	ττ	7.3%	2.7%	0.39%		
	ZZ	3.1%	1.1%	0.33%	0.069%	
	YY	0.26%	0.10%	0.028%	0.012%	0.0005%

Multilepton Analysis strategy

- Combination of channels not covered elsewhere
- Many different multiplicities of leptons, τs , jets and photons used
- Numerous signal regions with dedicated neural networks

ATLAS-CONF-2024-005

HH Results

HH Combination Non-resonant

Combination of the most sensitive HH channels

Phys. Lett. B 843 (2023) 137745

HH with leptons **bb+leptons and multileptons**

- Novel channels that add additional sensitivity •
- Individual sub-channels can be insensitive, but • statistical combinations are much stronger

HH Combination Resonant limits

Jason Veatch - CSU Stanislaus

Accepted by PRL

HH Combination **2HDM and MSSM Interpretations**

Limits set on Type-I 2HDM and MSSM

Obs. combined
SH results

SH Limits 2D limits

Projections

- The High-Luminosity LHC (HL-LHC) will provide O(10x) more collision data
- The increase in data will provide unprecedented physics sensitivity

Jason Veatch - CSU Stanislaus

HL-LHC Projections How well will we do?

- Measuring λ is one of the main physics goals of the HL-LHC
- Use current results to estimate sensitivity using full HL-LHC dataset
 - Scale luminosity and use various assumptions about systematic uncertainties

HL-LHC PROJEC

HL-LHC Projections A word of cautious optimism

• Past projections have been shown to be overly pessimistic:

"we can also set an upper limit of 4.3 × σ(HH → bbττ) at 95% Confidence Level on the signal cross section"

"...we can project an exclusion at 95% Confidence Level of BSM HH production with $\lambda_{\text{HHH}}/\lambda_{\text{SM}} \leq -4$ and $\lambda_{\text{HHH}}/\lambda_{\text{SM}} \geq 12$ "

ATL-PHYS-PUB-2015-046

• It is difficult to predict future innovations in analysis techniques

$bb\tau\tau$ results 6 years later with 5% of the HL-LHC dataset

HL-LHC PROJEC

Concluding Remarks

- Non-resonant HH production sensitivity approaching SM level
- Resonant HH and SH production are handles for BSM searches
 - Phase space coverage has significantly improved in the past year
- No single "golden channel" parallel searches and combination are necessary
- More results expected as Run II analyses wrap up and Run III analyses begin

Thank you for your attention

Backup Slides

Theory details

Vacuum Stability

Stable universe

The current state is the absolute minimum

The Higgs field will remain in this state forever

Vacuum Stability

Metastable universe

The current state is a local minimum

The vaccuum will eventually decay to a different minimum (lifetime is longer than the age of the universe)

Jason Veatch - CSU Stanislaus

The Early Universe

The Electroweak Phase Transition

- Baryogenesis requires a first order electroweak phase transition •
 - This in turn requires new physics that interacts with the Higgs boson
 - Can lead to an $\mathcal{O}(1)$ modification to the Higgs self-coupling Noble. Perelstein
- Some inflation models require that the Higgs sector couples to gravity ullet
 - This would modify the shape of the Higgs potential

Bezrukov, Shaposhnikov

Shape of the Higgs Potential

- Otherwise, is the SM Higgs potential correct?
- Numerous BSM models propose alternative Higgs potentials

Phys. Rev. D 101, 075023 (2020)

The HH Cross-Section

 The HH cross-section is ~1000 times smaller than that of single Higgs boson production

Non-resonant HH Production

HH invariant mass distribution

- The two ggF diagrams contribute to different kinematic regions
- Modifications to κ_{λ} would modify the cross-section and the m_{HH} distribution

Non-resonant HH Production HH invariant mass distribution

- The two ggF diagrams contribute to different kinematic regions
- Modifications to κ_{λ} would modify the cross-section and the m_{HH} distribution

arXiv:1910.00012

Experimental details

bbγγ Analysis regions

- Split analysis into categories to maximize sensitivity
- ATLAS uses low- and high-mass regions to target SM and BSM couplings
- CMS uses categories targeting ggF and VBF HH production

bbγγ VBF analysis regions

• Split analysis into low- and high-mass regions to target SM and BSM couplings

bbττ Fake-τ background estimate

4b ggF and VBF categories

4b Xwt and Xнн

$$X_{Wt} = \sqrt{\left(\frac{m_W - 80.4 \,\text{GeV}}{0.1 \, m_W}\right)^2 + \left(\frac{m_t - 172.5 \,\text{GeV}}{0.1 \, m_t}\right)^2}$$

$$X_{HH} = \sqrt{\left(\frac{m_{H1} - 124 \,\text{GeV}}{0.1 \, m_{H1}}\right)^2 + \left(\frac{m_{H2} - 117 \,\text{GeV}}{0.1 \, m_{H2}}\right)^2}$$

Single Higgs Corrections

Per channel results

bbγγ Non-resonant Results

- Limits set on non-resonant μ_{SM} and κ_{λ}

bbyy Resonant Results

- ATLAS set limits on spin-0 resonaces
- CMS set limits on spin-0 and spin-2 resonances

bbττ Results

- Limits set on μ_{SM} and κ_{λ}

Jason Veatch - CSU Stanislaus

bbtt K_{2V} Results

• Limits set on κ_{2V}

bbtt Resonant Results

• Limits set on spin-0 and spin-2 models

4b Results

- Limits set on μ_{SM} and κ_{λ}

4b K_{2V} Results

- Limits set on K_{2V} ullet
- CMS boosted analysis excludes $\kappa_{2V} = 0$ •

4b Resonant Results

• Limits set on spin-0 and spin-2 models

Summary Of All Channels As of July 2021

HH Combination

Kv-K₂v

2211.01216

CMS-PAS-HIG-22-006

- HH associated with a vector boson is the next leading production mode •
- Offers additional sensitivity to κ_{λ} , κ_{2V} and κ_{V} ullet

Higgs Self-Coupling

Measuring ****

Writing the Higgs potential as:

$$V(h) \simeq \frac{1}{2}m_H^2 h^2 + \lambda v h^3 + \frac{1}{4}\lambda h^4 + \dots$$

Measuring ****

Writing the Higgs potential as:

$$V(h) \simeq \frac{1}{2}m_{H}^{2}h^{2} + \lambda vh^{3} + \frac{1}{4}\lambda h^{4} + \dots$$

Measuring ****

Writing the Higgs potential as:

$$V(h) \simeq \frac{1}{2}m_H^2 h^2 + \lambda v h^3 + \frac{1}{4}\lambda h^4 + \dots$$

 λ also appears in the Higgs quartic coupling

This is unlikely to be reachable by the LHC...

VBF HH Production

Another way to produce HH

- Vector boson fusion (VBF) is the sub-dominant LHC HH production mode
- Unique signature of two forward jets
- Gives access to the HHVV coupling (K_{2V} is the coupling modifier)
- Smaller cross-section than gluon-gluon fusion (~1.72 fb)

HH Combination 2HDM and MSSM Interpretations

¹⁸⁰⁰ 1600 1600 ATLAS Obs. combined $\sqrt{s} = 13 \text{ TeV}, 126 - 139 \text{ fb}^{-1}$ Exp. combined Exp. $b\bar{b}\tau^+\tau^ H \rightarrow hh$, Type-I 2HDM, tan β =1 Exp. bbbb 95% CL upper limits Γ_H/m_H > 5% 1400 Exp. bbyy 1200 1000 800 600 400 251-0.08 0.06 -0.06 -0.04 -0.02 0.02 0.04 0.08 0 $\cos(\beta - \alpha)$

Jason Veatch - CSU Stanislaus

Accepted by PRL

HH+H Combination

• Single Higgs boson production is also sensitive to λ through loop corrections, e.g.,

Additional constraints can be achieved by combining HH and H searches

 $H \kappa_{\lambda}$ only - HH κ_{λ} only - $HH + H \kappa_{\lambda}$ only $HH + H \kappa_{\lambda}$ generic 95% 68% 10 15 Kλ

80

HH Combination

- Statistically combining channels increases sensitivity
- Combination of the three most sensitive HH channels

Kλ

HH Combination

K₂v

• Exclusion of $K_{2V} = 0$

EFT Interpretations

- HH results are also interpreted in the context of Effective Field Theories (EFTs)
- The Higgs EFT (HEFT) includes two additional effective coupling parameters

bbγγ and bbττ combined limits on HEFT shape benchmarks and couplings

