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Motivation

Establish a more rigorous description of

wave DM and the wave-particle boundary
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Outline

1. What is the density matrix of dark matter?

2. A rigorous definition of the coherence time

3. A single calculation across the wave-particle boundary
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The Density Matrix of
Dark Matter



The Density Matrix of Dark Matter

Coherent states defined by d | a) = a| a) are overcomplete (but
not orthogonal) = diagonal decomposition of the density matrix

Glauber-Sudarshan P

d?a P(a) | a) <a | [Glauber 1963],

[Sudarshan 1963]
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The Density Matrix of Dark Matter

Coherent states defined by d | a) = a| a) are overcomplete (but
not orthogonal) = diagonal decomposition of the density matrix

Glauber-Sudarshan P

ﬁ — dza P(a) | a)(a | [Glauber 1963],

[Sudarshan 1963]

y

Properties of P(a):
p'=p = PlaeR

Tr[p] =1 = |d*aP(a)=1
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The Density Matrix of Dark Matter

Coherent states defined by d | a) = a| a) are overcomplete (but
not orthogonal) = diagonal decomposition of the density matrix

Glauber-Sudarshan P

ﬁ — dza P(a) | a)(a | [Glauber 1963],

[Sudarshan 1963]

y

Properties of P(a):
p'=p = PlaeR

Tr[p] =1 = |d*aP(a)=1

NB: P(a) is not a probability distribution, P(a) < O allowed
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The Density Matrix of Dark Matter

[Glauber 1963]: P(a) obeys the central limit theorem
So generally expect (e.g. thermal radiation) that

Px = | d°o (

1

——exp

ﬂ'Nk

y)
|ak|

Nk

) o | |

k: mode of the field
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P(oy)

See also [Kim, Lenocci 2022]
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The Density Matrix of Dark Matter

[Glauber 1963]: P(a) obeys the central limit theorem
So generally expect (e.g. thermal radiation) that

. " 1 _ | oy k _ .
pr = |’y (nT eXp [~ [ ) (o | Rt
o k k

k: mode of the field ) ~
P (ak)
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The Density Matrix of Dark Matter

[Glauber 1963]: P(a) obeys the central limit theorem
So generally expect (e.g. thermal radiation) that

o N
Px = | d°o (—exp : ) | o) o |

ﬂ'Nk Nk

P(ay)
Ny is the mean occupation of the mode, specified by

n density of particles
Ny = (Ny) =

density of states
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The Density Matrix of Dark Matter

[Glauber 1963]: P(a) obeys the central limit theorem
So generally expect (e.g. thermal radiation) that

n 1 _ |ak|2_
5 = | d?a | ——ex o o
Pk u k (nNk P N, ) | o) (o |

P(oy)

Ny is the mean occupation of the mode, specified by

~ . density of particles (27h)

N = (M) = i p(k)

e.g. Standard
Halo Model

density of states g,

Axion: g, =1

Dark photon: g, = 3
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The Density Matrix of Dark Matter

[Glauber 1963]: P(a) obeys the central limit theorem
So generally expect (e.g. thermal radiation) that

y)
1 |0‘k|

= | d?a, | —— ex o ) (o
Pk u k N, P N, | o) oy |

P(oy)

Ny~nXxV

oherence = # of 1ndistinguishable particles

Defines wave-particle boundary (given ppy, etc)

Axions: m ~ 14.4 eV
Dark photons: m ~ 11.0 eV
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DENSITY MATRIX

Scalar Field Statistics

Let’s determine the implications for a scalar field

7 1 A —ikx | AT ik
P(t,X) = Z \/2Va)k (ake kx alie k )

k
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DENSITY MATRIX

Scalar Field Statistics

Let’s determine the implications for a scalar field

bt x)= )

(af\ke—zk-x + él\l};ezkvc)

Kk \/2Va)k
As usual, (O) = Tr[p O], but if [4,dT] = 0, set &S) = algk)
in part
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DENSITY MATRIX

Scalar Field Statistics

Let’s determine the implications for a scalar field

B(t, x) = 2 (éke—ikx_l_aT m)
Kk \/2Va)k

As usual, (@) = Tr[p O], but if [4,47] = 0, set am = alg )
in part

—Re [ake_’k'x]

= cb(rx)—z

Va)k

with oy drawn from a Gaussian distribution, P(a,)
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DENSITY MATRIX

Scalar Field Statistics

Let’s determine the implications for a scalar field

7 1 A —ikx | AT ik
P(t,X) = Z \/2Va)k (ake kx alie k )

k

As usual, (@) = Tr[p O], but if [4, 4] = 0, set am = alg )
in part

~ cos(mt)

For a single mode

—Re [ake_’k'x]

= cb(tx)—z

Va)k

with oy drawn from a Gaussian distribution, P(a,)
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DENSITY MATRIX

Scalar Field Statistics

Let’s determine the implications for a scalar field

7 1 A —ikx | AT ikx
P(t,X) = Z \/2Va)k (ake kx a;f{e k )

k

As usual, (0) = Tr[p O], but if [d,a'] = 0, set a(ﬂ = o) |G

Kk in part III

_lk'x] ~ cos(mt)

For a single mode

——Re [ake

= cb(rx)—z

Va)k

with ¢ drawn from a Gaussian distribution, P(ay,)

= ¢ is a Gaussian random field, with

Also 0,¢p ~ Iml[a] is

<¢(t X)> — () & <¢2(t X)> ~ an.independent.

) Gaussian random field
EES EEEEE m
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P(a) Experimentally Testable
Key assumption: Gaussian P(a)

May not be true, e.g. coherent state or Bose-Einstein
Condensate T

[Erken, Sikivie, Tam, Yang 2012]

Could resolve with experiment (post discovery of DM):
look for non-Gaussianities in the fluctuations of ¢
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The Coherence Time
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COHERENCE TIME

Autocorrelation function

Having understood (¢"(¢, X)), natural to next consider
[(z,d) = ($p(t, X)p(t + 7, X + d))

Intuition: how much does knowledge of the

field at one point tell you about it at another?
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COHERENCE TIME

Autocorrelation function

Having understood (¢"(¢, X)), natural to next consider
[(z,d) = ($p(t, X)p(t + 7, X + d))

If stationary* can derive (with d = 0)

,0 p (60 ) *Need a slightly stronger
F(T) —_— d Q) COS (C()T) version to show this

- Also have results for d # 0

0, o w Cf. [Derevianko 2018]
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COHERENCE TIME

Autocorrelation function

Having understood (¢"(¢, X)), natural to next consider
[(z,d) = ($p(t, X)p(t + 7, X + d))

If stationary* can derive (with d = 0)

,0 p (60 ) *Need a slightly stronger
F(T) —_— d Q) COS (C()T) version to show this

- Also have results for d # 0

0, o w Cf. [Derevianko 2018]

2

For DM, w ~ m+ %mv , with v set by e.g.

— (V42§

JV) =—55e

Standard Halo
Model
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COHERENCE TIME

Autocorrelation function

p(w)
)

I'(z) = T“d cos(wr)
@ @
"""""""""""" In reality,

1.0 f SHM, vy = vy = 0.2 4 Vo ~ Vg ~ 1073

0.5 |
S
= |
= 00}
S
- |

—0.5f

—1.0}

o 5 100 150 200
mT
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COHERENCE TIME

Autocorrelation function

p(w)
)

['(r) =— [a’ cos(w7)
6)) 6}
1.0,
7. = exponential
0.5 3 ; decay time of I'(7)
S _
= _
= 007
S
— _
—0.5 7
~1.0¢
0 50 100 150 200
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Coherence Time

2
[0 F(T) Common def. in quantum optics,
: . — e.g. [Mandel & Wolf, “Optical
Deflne . TC - dT Coherence and Quantum Optics”]
F(O) Cf. [Masia-Roig+ 2023]
v -0

BERKELEY

ﬂ Nick Rodd | A Quantum Description of Wave DM 25




Coherence Time

[0 F(T) Common def. in quantum optics,
: . — e.g. [Mandel & Wolf, “Optical
Deflne . TC - dT Coherence and Quantum Optics”]
F(O) Cf. [Masia-Roig+ 2023]
v—00

Example 1: I'(7) = Ae™'?V% find 7. = 7

C
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Coherence Time

Define: 7. =

r OO

J —00

dt

['(7)
I'(0)

Common def. in quantum optics,
e.g. [Mandel & Wolf, “Optical

Coherence and Quantum Optics”]
Cf. [Masia-Roig+ 2023]

Example 1: I'(7) = Ae™'"V%, find 7. = T,

Example 2: DM with the SHM

ﬁzErf [\/5 Vo! v()]

1. =

EY
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3 2 —2vé/v§
(1 P20 - 6V
4 \/ 2nErt [\/EVQ/VO]
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Coherence Time

[0 F(T) Common def. in quantum optics,
: . — e.g. [Mandel & Wolf, “Optical
Deflne . TC - dT Coherence and Quantum Optics”]
F(O) Cf. [Masia-Roig+ 2023]
v—00

Example 1: I'(7) = Ae™'?V% find 7. = 7

C

Example 2: DM with the SHM

V 2nErt [\/EVG/V()] 3‘}3 VoVl —2v3/v¢
r = l+ =2 — - O
Move 4 \/ 2nErt [\/5 V! vO]
‘ irrelgvant J

But it is a precisely defined concept
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Coherence Time

Define: 7. =

r OO

v—0

dt

['(7)
I'(0)

Example 1: ['(7) = Ae~ "%, find T, =

Example 2: DM with the SHM

\@zErf [\/5 Vo! v()]

1. =

I neV

m

~ 2.8 S

EY
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)
3v

27,2
VOVG) ¢ 2va/vg

Common def. in quantum optics,
e.g. [Mandel & Wolf, “Optical

Coherence and Quantum Optics”]

T

Cf. [Masia-Roig+ 2023]

C

F O

4 \/ZZ’El‘f [\/5 V! vO]

-~

1rrelevant

But it is a precisely defined concept
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COHERENCE TIME

Frequency Domain

By the Wiener-Khinchin theorem,

S(w) = dr T(7)e'®"

J—00
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COHERENCE TIME

Frequency Domain

By the Wiener-Khinchin theorem,

r 0

S(w) = dr T(7)e'®"

J—00

Can use to show that,

['(7) = pda)

8||E

EY
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f)

cos(wr) = Sw) =

mp p(w)

W @

Cf. [Dror, Murayama, NLR 2021]
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COHERENCE TIME

Frequency Domain

By the Wiener-Khinchin theorem,

S(w) =

r OO

dr T(7)e'®"

J

— Q0

Can use to show that,

I'(r) = ﬁ_ dw P
@ |

f)

Further, width of S(w) is Aw = 1/,

cos(wr) = S(w)=—

Intuition: 7, measures how long

¢P(t) = ¢y cos(mt) is a good approximation
See also [Dror, Gori, Leedom, NLR 2023]
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mp p(w)

W @

Cf. [Dror, Murayama, NLR 2021]
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Wave-Particle Boundary



Wave-Particle Boundary

So far [d,d"] ~ 0; corrections O(1/N)

Now [d,d"] = 1, but for simplicity take a single mode
(0 = m)

Question: what is the energy in a box of volume V?

L ~ V1/3

Similar result holds for

calculation in a finite
physical volume
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Wave-Particle Boundary

Rewrite Gaussian p in the number basis

- , e—|a|2/N
= | d“a aXa
P | — |a){a]
4 o k
1 N
— kY {(k
3 () e
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Here k € N, not
wavevector!
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Wave-Particle Boundary

Rewrite Gaussian p in the number basis

- , e—|a|2/N
= | d“a aXa
P | — |a){a]
4 o k
1 N
— kY {(k
3 () e

Probability of seeing k quanta in V, is
Nk

p(k) - (1 _|_N)k+l

For a single mode: £ = m X k,

EY
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Here k € N, not
wavevector!
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Wave-Particle Boundary

The mean and standard deviation of k:
Hi = <k> =N
or = (k*) — (k)* = N(1 + N)

EY
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Wave-Particle Boundary

The mean and standard deviation of k:
Hi = <k> =N
or = (k*) — (k)* = N(1 + N)

For N < 1, 013 = U,

Poisson distributed
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Holds for all higher moments
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Wave-Particle Boundary

The mean and standard deviation of k:
Hi = <k> =N
or = (k*) — (k)* = N(1 + N)

For N < 1, 013 = U,

Poisson distributed

For N > 1, sz = ,ukz
Exponentially distributed
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Holds for all higher moments
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Wave-Particle Boundary

The mean and standard deviation of k:
Hi = <k> =N
or = (k*) — (k)* = N(1 + N)

For N ~ 1 neither Poisson nor exponential
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Conclusion

The quantum approach opens a path to a
rigorous description of wave dark matter

Open questions:

o Determine the exact P(a) of DM
O Interface with experiment (quantum measurement theory)

o0 Resolve the distribution of polarizations for dark photons
O ik
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