

Measurement of Higgs boson properties with the ATLAS and CMS experiment

Viviana Cavaliere (BNL)

The Standard Model Higgs boson

12 years from the discovery of the **Higgs boson!:**

- Origin of the mass of elementary particle
 - Fermions: Yukawa couplings
 - Bosons: Brout-Englert-Higgs (BEH) mechanism
- Potential portal to new physics e.g. Higgs coupling with dark matter

Precision era:

- Higgs boson is fundamental. We need best knowledge on its properties
- Precision could be portal to new physics
- Thanks to the amazing work of LHC and ATLAS and CMS experiments ~8 million Higgs events produced with the Run 2 Data at sqrt(s) = 13 TeV with O(0.1%) selected for physics analysis

Higgs production

Higgs decay

- \cdot cc and $\mu\mu$ are still being searched for.
- \cdot Zy is above 3 σ in the combination of ATLAS and CMS.

Nature 607, 52 (2022)

Important parameters for the Higgs boson

Higgs boson mass measurement: Higgs $\Rightarrow \gamma \gamma$

- Categorization by detector region, γ conversion type, and p_T improves total uncertainty by 17% compared with inclusive case
- Reduction of systematic uncertainty by factor of 4 compared with previous iteration based on partial Run 2 data
 - Improved photon energy scale calibration
 - Better constraint one→γ extrapolation uncertainty using Z→ee data
- 0.1% precision from a single channel!

Higgs boson measurement: H->ZZ*->4I (CMS)

[CMS-PAS-HIG-21-019]

- Beam-spot constraint in muon reconstruction + kinematic fit to Z-pole for on-shell leptonpair candidate (+15% improvement in precision)
- Categorization based on per-event 4I mass resolution (+8%)
- 2D fit of m4l and matrix-element-based (MELA) discriminant (+4%)
- Measurement fully driven by data stat uncertainty
- Main syst from muon momentum and electron energy scale uncertainties

Current best Higgs mass measurement

ATLAS Run 1+2: mH = 125.11 ± 0.11 (= ± 0.09 (stat) ± 0.06 (syst)) GeV

CMS Run 1+2016: mH = 125.38 ± 0.14 (= ± 0.11 (stat) ± 0.08 (syst)) GeV [Phys. Lett. B 805 (2020) 135425

→ 0.1% precision achieved with Run 1 + partial or full Run 2 measurement for ATLAS & CMS standalone!

Higgs boson Width

[Nat. Phys. 18 (2022) 1329]

- Width precisely predicted within the SM: [R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (20220] ΓSM = 4.1 MeV
- Small value→difficult to measure due to detector resolution O (1-2 GeV)
- Measure in $H \rightarrow ZZ$ compare on- and offshell production:

$$\sigma_{gg \to H \to ZZ^*}^{\text{on-shell}} \sim \frac{g_{ggH}^2 g_{HZZ}^2}{m_H \Gamma_H}$$
$$\sigma_{gg \to H^* \to ZZ}^{\text{off-shell}} \sim \frac{g_{ggH}^2 g_{HZZ}^2}{(2m_Z)^2}$$

 \rightarrow Use $H \rightarrow ZZ \rightarrow 4I \& H \rightarrow ZZ \rightarrow 2I2v$ events to enhance sensitivity

 $d\sigma / dm_{4l}$ (fb/GeV)

Higgs boson width

[Phys. Lett. B 846 (2023) 138223]

[CMS-PAS-HIG-21-019]

138 fb⁻¹ (13 TeV)

$$\frac{20}{10}$$

$$\frac{41 \text{ off-shell + on-shell + 2l2v off-shell}}{10}$$

$$\frac{10}{0}$$

$$\frac{10}{5}$$

$$\frac{68\% \text{ CL}}{10}$$

$$\frac{68\% \text{ CL}}{15}$$

$$\Gamma_{\text{H}} (\text{MeV})$$

CMS *Preliminary*

Observed

Expected

4I off-shell + on-shell

 $\Gamma_H = 2.9^{+2.3}_{-1.7} MeV$

What about HL-LHC?

- Mass measurements : mainly from H \rightarrow 4µ, 2e2µ
 - Naive stat. uncertainty extrapolation for a CMS-like experiment ~ 24 MeV
 - Run II syst. uncertainty from muon energy scale ~ 30 MeV <u>CMS PAS FTR-21-007</u>
 - Might expect improvements from the huge calibration sample + decrease of stat. uncertainty from increased acceptance
 - \Rightarrow target $\mathcal{O}(20 \text{ MeV})$?
- Width measurements : from off-shell measurement (+ on-shell/off-shell couplings as in SM)
 - CMS extrapolation from Run II, 78 fb⁻¹ H \rightarrow 4 ℓ analysis \Rightarrow assuming theory uncertainties halved w.r.t. Run II
 - \Rightarrow ATLAS + CMS : $\Gamma = 4.1^{+0.7}_{-0.8}$ MeV

ATL-PHYS-PUB-2022-018

Cross section and coupling modifiers

[Nature 607, 52 (2022)]

 $(K_{\chi} = 1 \text{ in the SM})$

Cross section and coupling modifiers

[Nature 607 (2022) 60-68]

Dive into phase-space sensitive to BSM

- Shifting interest from static to dynamic properties of the Higgs boson
- Increased impact expected from new physics at high momentum
- Inclusive measurements: highprecision yields precision on new physics scale δ_µ = 1% ==> Λ ~ 2.5 TeV
- Differential: High momentum production sensitive to new physics $\delta_{\sigma} = 15\%$ (q=1TeV) ==> $\Lambda \sim 2.5$ TeV

Fully hadronic final state expected to have more sensitivity in the tails of distributions

Coupling modifier constraints: self-coupling through HH

	bb	ww	ττ	ZZ	YY
bb	34%				
ww	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
YY	0.26%	0.10%	0.028%	0.012%	0.0005%

Measure it by looking at HH pair production:

- Very rare process
- ~ 1000x smaller than single H

See talk by J. Veatch

 κ_{λ} contributes to single-Higgs at NLO EW corrections (indirect constraint)

Coupling modifier constraints: self-coupling

[CMS-PAS-HIG-23-006]

[Phys. Lett. B 843 (2023) 137745]

- Exp only confidence interval is 5% better than HH (most sensitive), 78% better than H (for ATLAS)
- Assumption on κ_t can be relaxed w/o losing sensitivity κ_λ
- More generic model (all coupling modifiers floating) still gives strong constraints

Higgs boson self-coupling projections

- ATLAS combination: Significance of 3.4 σ (4.9 σ), assuming the baseline scenario (no syst scenario).
- + 5σ SM HH significance from back-of-the-envelope combination with CMS
- Can improve if we continue working on new things like trigger, event reconstruction, new techniques etc.

Combinations with precision differential measurements of Higgs production will push sensitivity even further!

Summary

- Precision Higgs boson coupling measurements offer a unique insight into BSM physics & complimentary to direct searches
- With Run 1+2 data, we have
 - 0.09% precision on Higgs boson mass
 - ~50% precision on Γ_H from off-shell
 - ~10% precision on production cross-sections
 - Higgs self-coupling at ~3 times the SM
- Run 3 ongoing: will hopefully triple the stats
- Perfect time to explore new ideas!
- x 20 larger Higgs boson sample at HL-LHC ==>
 Will improve precision

"Backup"

Large part of the work is about the photon energy scale calibration and its uncertainty ESU Reconstruction/calibration changes w.r.t. previous measurement, among others

8

- better energy collection (especially for converted photons)
- refined ECAL layer inter-calibration \Rightarrow linearity and electron \rightarrow photon extrapolation
- better understanding on electronics non-linearity
- dedicated correction for photon out-of-cluster energy leakage mis-modeling by simulation
 - \Rightarrow e.g. ~ 40% reduction in ESU for E_T = 60 GeV photon at η = 0.3

In addition measure the energy response linearity with the huge $Z \rightarrow$ ee sample available \implies use it to constrain the systematic uncertainties

 $\sim 30\%$ / $\sim 50\%$ *further* reduction of ESU for $E_T = 60$ GeV unconverted photon in barrel / endcap

Brookhaven National Laboratory

1 observed Higgs event in a trillion (10¹²) pp collisions²³

The Higgs and the fate of our universe

- The Higgs boson was the missing of the SM and we've had it for more than 10 years now..
 - Is our universe stable or metastable?

Higgs self-coupling

Analysis Strategy & Region Definitions

Higgs-candidate jet mass fit (*mJH*) to SR and CR

- Reconstructed combining calorimeter & tracking measurements •
- Corrected to account for muons from semileptonic b-hadron decays

Multi-Jet Background Estimation

- Multi-jet background modeled from CR with Transfer Factor (TF) dependent on candidate-jet p_T & ρ=log(m_{J2}/p_{T2})::
 - $TF(p_T, \rho) = \sum_{kl} \alpha_{kl} \rho^k p_T^{l}$, where α_{kl} are polynomial coefficients
- TF scales CR events to yield number of multi-jet events in SR
- Polynomial order determined via Fisher F-tests in data
 - First order in both p_T & ρ proves to be sufficient, without inducing significant spurious signal

Alternate method: BDT which uses data from the CR and reweighs the kinematic to the SR

Challenges ahead

Uncertainty source	δμ
Signal modeling	+0.10 -0.02
MC statistical uncertainty	+0.13 -0.13
Instrumental (pileup, luminosity)	+0.012 -0.004
Large-R jet	+0.13 -0.14
Top-quark modeling	+0.14 -0.15
Other theory modeling	+0.050 -0.031
$H \rightarrow b\bar{b}$ tagging	+0.52 -0.23
Multijet estimate (TF uncertainty)	+0.52 -0.41
Multijet modeling (TF vs. BDT)	+0.14 -0.18
Total systematic uncertainty	+0.80 -0.61
Signal statistical uncertainty	+0.60 -0.60
Z+jets normalization	+0.42
Total statistical uncertainty	+0.63
Total uncertainty	+1.02 -0.88

- Systematic and statistical uncertainty on the same level
- Systematic uncertainties dominated by shape of multi-jet data-driven estimate & Hbbtagger scale factors

BDT method

- BDT method: extract background templates from events failing both V- and Hbb-tagger requirements
- MVA used to perform kinematic reweighting, by predicting event weights needed to bring shapes of kinematic distributions in CRs and SRs into agreement

H->bb tagger and Calibration

The Hbb Tagger is used to tag boosted Higgs bosons decaying to bb using a NN with 3-class output: Higgs, multijet and top. The following discriminant is used:

$$D_{H_{bb}} = \ln \frac{p_{\text{Higgs}}}{f_{top} \cdot p_{\text{top}} + (1 - f_{top}) \cdot p_{\text{multijet}}}$$
(1)

where f_{top} determines the weight of the top background shape in the final discriminant, set to $f_{top} = 0.25$ in this analysis.

Higher D scores correspond to jets more likely to originate from Higgs to $b\bar{b}$ decays.

- Calibration using large-R jets having at least two ghost-associated VR track jets
- Probe events: $Z(\rightarrow b\bar{b}) + jets$
- p_T -dependent calibration: 450-500, 500-600, 600-1000 GeV
- Methodology:

Using $Z \rightarrow ll$ to normalise the $Z \rightarrow b\bar{b}$ predictions

HH production modes

• The HH leading production mode is gluon gluon fusion (ggF):

• Destructive interference between the two diagrams results in a very small SM cross section of σ^{HH}_{ggF} ~31.0 fb at 13 TeV. **K**_{λ} = **C**_{HHH}/**C**_{HHH}SM

- VBF production mode also very important $\sigma \sim 1.72$ fb
- Gives access to k_{2V} = C_{VVHH}/
 C_{VVHH}SM

Vector Boson Associated (VHH) σ ~ 0.86 fb

Baseline Scenario

Systematic uncertainties	Scale factors for HL-LHC baseline scenario	
Theoretical uncertainty	0.5	
b-jet tagging efficiency	0.5	
c-jet tagging efficiency	0.5	
Light-jet tagging efficiency	1.0	
Jet energy scale and resolution	1.0	
Luminosity	0.6	
Background bootstrap uncertainty	0.5	
Background shape uncertainty	1.0	

Other Scenarios:

 No Systematic Uncertainties (Statistical Only)
 Run 2 Systematic Uncertainties
 Run 2 Systematic Uncertainties, with theoretical uncertainties halved

Projections

Channel		Integrated luminosity (fb ⁻¹)
$HH \rightarrow b\bar{b}\gamma\gamma$	(ggFHH, VBFHH)	139
$HH ightarrow b ar{b} au ar{ au}$	(ggFHH, VBFHH)	139
$HH \rightarrow b\bar{b}b\bar{b}$	(ggFHH, VBFHH)	126
$H \rightarrow \gamma \gamma$	(all production modes)	139
$H \!\rightarrow\! ZZ^{(*)} \!\rightarrow\! 4\ell$	(all production modes)	139
$H \rightarrow \tau^+ \tau^-$	(all production modes)	139
$H \rightarrow WW^*$	(ggF,VBF)	139
$H \rightarrow b \bar{b}$	(VH)	139
$H \rightarrow b \bar{b}$	(VBF)	126
$H \rightarrow b \bar{b}$	$(t\bar{t}H)$	139