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Abstract – The statistical sampling method for the measurement of radioactive decay half-lives
exhibits intriguing features such as that the half-life is approximately the median of a distribution
closely resembling a Cauchy distribution. Whilst initial theoretical considerations suggested that
in certain cases the method could have significant advantages, accurate measurements by statistical
sampling have proven difficult, for they require an exercise in non-standard statistical analysis.
As a consequence, no half-life measurement using this method has yet been reported and no
comparison with traditional methods has ever been made. We used a Monte Carlo approach to
address these analysis difficulties, and present the first experimental measurement of a radioisotope
half-life (211Pb) by statistical sampling in good agreement with the literature recommended value.
Our work also focused on the comparison between statistical sampling and exponential regression
analysis, and concluded that exponential regression achieves generally the highest accuracy.

editor’s  choice Copyright c© EPLA, 2018

Introduction. – The decay constant λ of radioactive
isotopes is a fundamental quantity in radiation metrol-
ogy, which finds application in nuclear medicine, power
generation, nuclear forensics, geochronology, basic nuclear
physics and astrophysics. Such constant, or the corre-
sponding half-life τ̂ = ln(2)/λ, is widely regarded as in-
dependent of all the physical or chemical conditions [1],
although variations have been detected in case of electron-
capture and internal-conversion decay when the nuclear
decay is coupled to the atomic environment [2,3]. In these
cases, small changes can be induced by pressure, temper-
ature, or electric fields, which effectively modify the elec-
tron density at the nucleus [4]. More drastic changes have
been observed with ionized atoms, in which case decay
modes possible in neutral atoms may become hindered or
forbidden [5].

Despite the apparent simplicity of half-life measure-
ments, half-lives derived from different data sets are of-
ten discrepant and for the majority of the radionuclides

the spread of experimentally determined half-life values
is larger than expected from the claimed accuracy [6,7].
Besides the need to resolve discrepancies, research to-
ward improving half-life measurements may have impor-
tant consequences in several areas of physics, which involve
high-precision half-life measurements. Examples include
the study of the coupling between the nuclear decay
and the atomic electron cloud [4], and the study of su-
perallowed β-decays, which sets stringent limits on the
possible scalar current contribution to the weak inter-
action (see e.g., ref. [8]). In addition, deviations from
the exponential law for the decay of quantum systems
are possible and were predicted in conformity to quan-
tum electrodynamics for time intervals very short or very
long compared to the mean half-life [9–11]. Experimen-
tal evidence of non-exponential decay were reported in
atomic and molecular physics for the spontaneous emis-
sion of optical photons [11] and quantum tunneling [12].
Claims of nuclear radioactivity exhibiting a periodic decay
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component, possibly due to geophysical or astrophysical
effects, were controversial and later disproved within a
precision range of 10−6 to 10−5 [13,14]. The discovery
of non-exponential nuclear decays may have extraordinary
implications for example in the case of radioisotope dating.

In the context of studying new data analysis techniques
for half-life measurements, this manuscript addresses the
technique of statistical sampling for half-life measure-
ments, which was first proposed in ref. [15] where the
distribution of half-life estimates from pairs of activity
measurements was shown unexpectedly to be a nearly per-
fect Cauchy distribution centered on the half-life. The
probability density function (pdf) of the half-life distribu-
tion was determined in ref. [16] where it was also shown
how a Cauchy distribution emerges from it. Reference [16]
suggested that statistical sampling may have an advan-
tage in the measurement of long-lived isotopes where ac-
tivity measurements may be difficult to record at regular
times. This is because the statistical sampling only deals
with frequency of events rather than their time order. In
the context of studying deviations from exponential law,
ref. [17] pointed out that approaches based on statisti-
cal sampling often readily show effects such as periodic
fluctuations (including detector instabilities [18]) as peak
displacement and non-zero skewness of the half-life dis-
tribution. However, due to data analysis difficulties, no
half-life measurement using this method have yet been re-
ported. In this manuscript we report a statistical analysis
based on a Monte Carlo (MC) approach that allows the
application of the method in practice, and a quantitative
comparison with the exponential regression analysis.

The statistical sampling method. – The radioac-
tive decay is a random process described by the discrete
binomial distribution or the Poisson distribution in the
limiting case of large number of atoms. Under this as-
sumption the decay rate (or activity) A as a function of
time takes the well-known form

A(t) = A(t0)e−λ(t−t0), (1)

where t0 is an arbitrary reference time. A typical half-
life measurement by radiometric techniques consists of a
finite series of n activity measurements Ai=1,2...,n each Ai

determined from the number of decay in a time interval
Δt. Hereafter we assume that the duration of such ex-
periment is nΔt. The half-life is then estimated fitting
data with eq. (1). Alternatively, the statistical sampling
method consists in estimating half-life values from any
subset of the possible n(n − 1)/2 pairs of activity mea-
surements accordingly to

τij =
tij ln 2

ln(Ai/Aj)
(tij = tj − ti > 0). (2)

The distribution of these half-life estimates τ (hereafter
half-life distribution) was studied in ref. [16], which re-
ported the distribution’s pdf in the assumption that

activity measurements at different times are independent
Poisson variate with high mean count:

f(τ) =

√
2
π

ln 2
n(n − 1)

n−1∑
i=1

n∑
j=i+1

( tij

τ2 ) exp
(

tij ln 2
τ

)
σij

×exp

{
− 1

2σ2
ij

[
exp

(
tij ln 2

τ

)
− μi

μj

]2
}

, (3)

where μn is the number of decays recorded in the n-th
counting time interval Δt, and

σij =

√
μi

μ2
j

(
1 +

μi

μj

)
. (4)

In ref. [16] it was shown that when μn = μ0e
−λtn , and

under the conditions:

a) tij � τ and tij � τ̂ ,

b) μ0 � 1,

c) n � 1,

the exact pdf can be approximated by a sum of Cauchy
functions of different scale parameters all centered on the
true half-life τ̂ :

f(τ) ≈
n−1∑
i=1

n∑
j=i+1

tij
τ̂2

exp
(

tij ln 2
τ̂

)
1 + μ0

τ4 t2ij(τ − τ̂ )2
. (5)

A further step of approximation, detailed in ref. [16], col-
lapses the double sum of eq. (5) into the single Cauchy
distribution:

f(τ) ≈
{

πγ

[
1 +

(
τ − τ̂

γ

)2
]}−1

(6)

with approximate scaling factor γ:

γ =
6 τ̂2

n ln2
√

πμ0
. (7)

Equations (3)–(7) provide the theoretical ground of our
work.

Monte Carlo simulations. – A decay experiment
with a source of N atoms, and consisting of activity mea-
surements Ai determined at ti from the number of decays
in the time interval [ti − Δt/2, ti + Δt/2], was simulated
using the function RandomVariate [19] of Mathematica
11 [20,21] set to produce pseudo-random variate from the
binomial distribution with N trials and success probabil-
ity Pi:

Pi = λ

ti+Δt/2∫
ti−Δt/2

e−λ(t−t0)dt, (8)

where t0 is the starting time of the experiment. For sim-
plicity and without loss of generality, simulations reported
in the following were performed with N = 107, n = 40,
τ̂ = 10 a.u. (arbitrary units) and, unless otherwise stated,
Δt = 0.2 a.u.
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Median and truncated mean of the half-life dis-
tribution. – If the half-life distribution eq. (3) was a per-
fect Cauchy (as eq. (6)), the half-life τ̂ would coincide with
the sample median or the sample truncated mean [22,23].
The sample mean and sample variance would be undefined
along with any moments of order greater than or equal to
one. The half-life distribution, however, presents funda-
mental differences from the Cauchy distribution (see fig. 1)
such as: i) the distribution tails are not heavy, which im-
plies that the sample mean and variance are defined, ii) the
distribution is in principle asymmetric, and iii) the distri-
bution has a singularity at the half-life estimate τ = 0.
Despite these differences, simulations (see fig. 1) showed
that in many cases of practical interest the median of the
half-life distribution still provides an accurate estimate of
the true half-life. These cases are defined by the parameter
space (n, μ0, τ̂ ) of narrow distributions that do not involve
the τ = 0 singularity. Notice that the parameters n, μ0, τ̂
determine the width of the Cauchy-like distribution qual-
itatively as in eq. (7). Therefore, one can easily see that
the method of extracting half-life as the distribution me-
dian suffers in the limits of low initial activities and long
half-lives. To estimate the uncertainty of a half-life mea-
surement, we followed the steps of a) determine the me-
dian τ̂m of the experimental half-life distribution, b) run a
large number of pseudo experiments each with half-life τ̂m,
and simulating the same number of decay events as in the
real experiment, c) for each pseudo experiment determine
the median of the half-life distribution, d) determine the
standard deviation of the pseudo-experimental medians,
which we assumed to be the statistical uncertainty of the
experimental half-life. The same procedure was also used
for the half-life measurement by truncated mean. The un-
certainties reported in fig. 1 were determined using this
procedure; another quantitative comparison between the
median and the regression analysis is reported in the fol-
lowing sections describing the experimental measurement
of the half-life of the radionuclide 211Pb.

Least-square fit of the half-life distribution. –
The least-square (LS) fit of the pdf to the half-life distribu-
tion is the most comprehensive way to study the half-life
distribution and extract the half-life. However, because
activity data are repeatedly used, entries into the half-
life distribution are not independent (see fig. 2). As a
consequence, i) the weights needed for the LS method
are non-trivial to determine, and ii) simulations showed
that the uncertainty estimated from the covariance matrix
as square root of the diagonal elements largely underesti-
mates the half-life uncertainty. Dealing with these issues is
not a matter of standard statistical analysis, we addressed
them using a MC approach described in the following.

Determination of weights. A large number of simu-
lated experiments were performed with half-life τ̂ and ini-
tial activity μ0/Δt, and the resulting half-life distributions
were binned in histograms of identical bin width. The
histograms comparison allowed to determine the content

Fig. 1: (Colour online) Average of 100 simulated half-life dis-
tributions in case of (left) Δt = 0.2 a.u. and (right) Δt = 0.02
a.u. Such average is necessary to highlight the shape of the
low-count distribution tails. For each simulated experiment a
half-life was determined from exponential regression and sta-
tistical sampling by median. It is possible to compare the two
methods after determining the average of the half-lives from ex-
ponential regression (τ̂e) to the average of the half-life distribu-
tion medians (τ̂m). Uncertainties were determined as standard
deviation of the mean (sdom). When the half-life distribution
assumes values across the singularity at τ = 0 the measurement
by median is affected by a significant systematic error. Oth-
erwise, the median is a good estimator of the half-life despite
the half-life distribution asymmetry. A Cauchy distribution
(dashed red) is superimposed to guide the eye, with parame-
ters of γ = 0.182 and τ̂ = 9.997 a.u. (left) and γ = 4.166 and
τ̂ = 7.835 a.u. (right).

Fig. 2: (colour online) Left: histograms of 104 simulated half-
life distributions were constructed. For each histogram the
content of two bins b1 and b2 corresponding to the frequency
of occurrence of the two half-life estimates τ1 and τ2 with
τ1 < τ2 < τ̂ , were plotted against each other in a 2D histogram.
Right: same as in the left panel, but for τ1 < τ̂ < τ2. The tilt
of the ellipsoids implies that the frequency of occurrence of
half-life estimates shorter (longer) than τ̂ are directly corre-
lated to each other, and they are anticorrelated to frequency
of occurrence of half-life estimates longer (shorter) than τ̂ .

distribution and the standard deviation σ of each bin.
Figure 3 shows the content distribution of one bin chosen
arbitrarily as an example, and σ as a function of the aver-
age bin content. We used the standard deviations σ com-
puted from simulations to determine the weight w = 1/σ2

for each bin needed for the LS fit.

Results of the LS fit for simulated decays. The unnor-
malised probability function resulting from the LS method
agreed very well with simulations (see fig. 4). Deviations
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Fig. 3: (Colour online) 104 simulated half-life distributions
were binned into as many histograms. The comparison of these
histograms allowed the determination of: i) the content distri-
bution of the i-th bin bi, ii) the mean content of each bin bi,
and iii) the bin’s content standard deviation σi. The left panel
shows the distribution of the content of the bin b0 chosen ar-
bitrarily as an example, and relative to the half-life estimate
τ0 = 9.95 a.u. The fit of this distribution with a normal func-
tion (solid red) show a small deviation from normality. Right:
the plot of σi as a function of b̄i. As opposite to the case
of independent data that follows Poisson statistics, in general
σi �=

√
bi.

were only apparent in simulations when very low-activities
were involved, when the normal approximation to the
Poisson statistics (in which the pdf was derived) was not
fulfilled. Agreement was also found in the case where the
τ = 0 singularity was concerned when, as discussed in
the previous section, the median cannot be used as an es-
timate of the half-life. Notice that despite the apparent
agreement between simulations and the pdf, the reduced
χ2 is not guaranteed to hold meaning as a goodness-of-
fit parameter because the number of degree of freedom in
case of non linear models is in general undetermined [24].
Alternative methods to address the goodness-of-fit are be-
yond the scope of this manuscript, however, the results of
the statistical sampling could be compared precisely with
the results of the exponential regression analysis. Fig-
ure 5 shows such comparison for a set of 103 simulations.
For both methods the average half-life converged to the
true half-life, which implies the two methods achieved the
same trueness. However, the sample of half-lives resulting
from the statistical sampling had a slightly larger stan-
dard deviation, i.e., the method is less precise than the
regression analysis. These conclusions did not change ei-
ther when substantial interruptions in the experiment were
introduced or when the sampling time of activity mea-
surements was chosen randomly. The speculated advan-
tage of the statistical sampling consisting in dealing with
frequency of half-life estimates rather than time ordered
activities is, therefore, not substantiated by this work.

The comparison between the statistical sampling and
the exponential regression method showed two other main
differences. In the first case the correlation between τ̂
and μ0 is very small —likely a consequence of the almost
perfect symmetry of the half-life distribution. As an ex-
ample, in case of 107 decay and half-life τ̂ = 2000 a.u.,

Fig. 4: (Colour online) LS fit of the average half-life distri-
bution of 100 simulations using the unnormalized probability
density (red solid line) and weights obtained from 103 MC sim-
ulations. The figure shows the case of top: Δt = 0.2 a.u.
in linear (left) and logarithmic (right) scale, and bottom:
Δt = 0.02 a.u., reporting for both cases the mean half-life
obtained from the LS fits (τ̂ls) and from exponential regres-
sion (τ̂e) with their sdom. The pdf could account for all the
features of the half-life distribution including the asymmetry
and the τ = 0 singularity (bottom right). In both cases, the
LS fit provided half-lives in agreement with the exponential
regression.

the correlation factors determined from the covariance
matrix were 0.7 and 0.07 for the exponential regression
and the statistical sampling fit, respectively. In addition,
the sensitivity of the statistical sampling method to μ0
is much smaller than for the exponential fit. In the case
of the previous example, the measurement of μ0 lead to
66.96(3)×104 s−1 and 77(20)×104 s−1 for exponential re-
gression and the statistical sampling, respectively.

Test with experimental data: half-life of the radionu-
clide 211Pb. The lead isotope 211Pb is a naturally-
occurring β− emitter, member of the 235U decay chain.
It was measured recently at the National Physical Lab-
oratory (NPL) by α-particle counting of twelve samples
of 211Pb in equilibrium with its α-emitting progeny 211Bi
and 211Po [25]. The α-particle background was measured
prior to each sample measurement and in each case it
was less than 0.1 s−1. This was negligible compared to
the source decay rate that over the measurement time of
10 half-lives decreased from ≈ 104 to 10 s−1. In this
work we analysed the same data as in ref. [25] using
both the exponential regression and the statistical sam-
pling methods. Table 1 reports the results of the analysis
for each of the twelve sources. The weighted average of
the 12 measurements resulting from exponential regression
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Fig. 5: (Colour online) Top: difference Δτ̂ between the true
half-life τ̂ and the average half-life of simulated experiments
measured by exponential regression τ̂e and statistical sampling
(LS method) τ̂ls as a function of the sample size. Δτ̂ converged
to zero for large number of experiments, and its fluctuations
were within the expected uncertainty (shaded area) calculated
as ±σls where σls was the sdom of τ̂ls. Therefore, the true-
ness of the two estimators is comparable. Bottom: the stan-
dard deviations σ of half-lives as a function of the sample size
for different methods are comparable, but the exponential fit
achieves the best precision with smallest σ.

analysis 2169.77(15), in agreement with the statisti-
cal sampling results of 2169.94(17) s, 2170.01(17) s, and
2169.84(17) s is determined from the LS fit, median, and
truncated mean, respectively. Both results are compatible
with the recommended value 2170(2) s in ref. [25]. No-
tice that the uncertainty of the latter value includes an
estimation of the systematic error, which is beyond the
purpose of this work. In the case of the LS fit, the half-life
needed to generate the simulated weights was the sam-
ple median, and the results of the fits are illustrated in
fig. 6. For each source, the half-life determined by statis-
tical sampling was in very good agreement with the result
of the exponential fit. The agreement between the three
statistical sampling methods is not surprising. In fact, this
example fulfills the criteria highlighted in the previous sec-
tion concerning narrow distributions and the singularity
at τ = 0. Uncertainties from MC simulation are com-
patible with uncertainties extracted from the covariance
matrix in case of the exponential regression fit, but not
in case of the statistical sampling, where uncertainty from
the covariance matrix clearly underestimates the half-life
uncertainty. Also in this case, with experimental data, we
concluded that the statistical sampling method is less pre-
cise than the exponential regression analysis.

Conclusions. – This manuscript reports on our study
of the statistical sampling method for the measurement of
radioactive half-lives that allowed the first experimental
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Fig. 6: (Colour online) Experimental half-life distribution of
12 sources of 211Pb. The error bars shown were computed
from simulation and used to determine weights (see text). The
unnormalized probability function (red line) was fit to the ex-
perimental data.
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Table 1: Half-life measurements of 12 different sources of 211Pb using exponential regression and statistical sampling method.
In the latter case the methods of median, truncated mean, and least squared fit were used. The uncertainty quoted from MC for
the statistical sampling method is the one resulting from the median, which provide a conservative estimate or the uncertainty.

Exponential Regression Statistical Sampling

Source T1/2 (s) σ (s) σ (s) T1/2 (s) T1/2 (s) T1/2 (s) σ (s) σ (s)

# MC cov. LS median t.mean MC cov.

1 2168.63 0.61 0.52 2171.38 2171.67 2171.72 0.70 0.14

2 2170.60 0.57 0.49 2171.07 2171.09 2171.11 0.64 0.16

3 2170.22 0.51 0.44 2169.88 2169.99 2169.84 0.59 0.17

4 2169.16 0.52 0.45 2168.52 2168.39 2168.24 0.60 0.15

5 2169.92 0.62 0.54 2170.04 2169.79 2169.56 0.73 0.19

6 2169.88 0.56 0.49 2169.98 2170.03 2170.13 0.66 0.15

7 2169.01 0.43 0.38 2170.16 2170.29 2170.26 0.49 0.13

8 2170.36 0.40 0.36 2170.40 2170.46 2170.25 0.48 0.09

9 2170.03 0.47 0.42 2169.68 2169.74 2169.87 0.52 0.20

10 2169.89 0.50 0.45 2168.94 2169.11 2168.04 0.60 0.10

11 2169.54 0.51 0.45 2169.62 2169.68 2169.37 0.60 0.22

12 2170.06 0.52 0.46 2169.95 2170.05 2169.89 0.61 0.19

weighted 2169.77 2169.94 2170.01 2169.84
mean

uncertainty 0.15 0.17 0.17 0.17

measurement of a radioactive isotope (211Pb) by statis-
tical sampling, and the first quantitative assessment of
the method’s performance in comparison with the expo-
nential regression analysis. Correlation between entries of
the half-life distribution is the main difficulty we encoun-
tered, which we addressed using a Monte Carlo approach.
In particular, our analysis i) confirmed the validity of
the probability density function determined in ref. [16]
in a wider range of conditions than previously consid-
ered, ii) identified the conditions in which the median
and the truncated mean of the half-life distribution can
be used reliably to measure half-lives. These conditions
are fulfilled in many cases of practical interest, offering
a very simple mean to extract the half-life from exper-
imental data with no need for any regression analysis.
Our analysis also provided iii) a framework for the mea-
surement of the half-life by statistical sampling using a
least-square fit method. Based on such analysis, we con-
cluded that the statistical sampling method is valid, and
achieves the same trueness of the exponential regression.
However, in comparison to the latter, the statistical sam-
pling is slightly less precise. In addition, the suggested
advantage of the statistical sampling in case of activity
measurements recorded at irregular times was not rec-
ognized in this work; and the use of the method in the
search for non-exponential decays was found to be difficult

due to the lack of an obvious goodness-of-fit parameter.
The method is, therefore, unlikely to replace exponential
regression in any application requiring high precision. In
the other cases, statistical sampling provides a valid al-
ternative with a very intuitive visualization of the half-life
that may be exploited in the future to some advantage.
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[7] Pommé S., Metrologia, 52 (2015) S51.
[8] Dunlop M. R. et al., Phys. Rev. Lett., 116 (2016)

172501.
[9] Norman E. B., Gazes S. B., Crane S. G. and Ben-

net D. A., Phys. Rev. Lett., 60 (1988) 2246.
[10] The OPAL Collaboration, Phys. Lett. B, 368 (1996)

244.

22001-p6



Measuring radioactive half-lives via statistical sampling in practice

[11] Rothe C., Hintschich S. I. and Monkman A. P., Phys.
Rev. Lett., 96 (2006) 163601.

[12] Wilkinson S. R., Bharucha S. R., Fischer C. F.,

Madison M. C., Morrow K. W., Niu P. R., Sun-

daram Q. and Raizen B., Nature, 387 (1997) 575.
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