
SHELL-MODEL DIAGONALIZATION

Introduction
The main issue within the shell model (SM) is to attempt to include the effects

of residual interactions into the independent-particle model (IPM). Usually the
starting point is the IPM where a simple modified harmonic oscillator potential
is used to generate single-particle wave functions, from which the wave function
for the whole nucleus is constructed in a way consistent with the Pauli principle.
This set of IPM wave functions are therefore the solutions to:

H0Φi = E(0)
i Φi.

The effects of residual interactions need to be included, so the realistic Hamilto-
nian is written:

H = H0 + H ′.

The term H ′ represents the effects of residual interactions and we’ll refer to
solutions of the Schödinger equation using this full Hamiltonian H as “exact”.
If it were a small perturbation, then first-order perturbation theory could be
used. But this is really never the case and methods for incorporating larger
perturbations on a Hamiltonian are needed. The following sketches out the
general method of matrix diagonalization for such problems. The same methods
are used in perturbation theory in the case of degenerate levels as discussed in
Chapter 7 of A.M. Rae’s book Introduction to Quantum Mechanics.

Method
We need to find the solutions to the full Hamiltonian:

HΨi = EiΨi.

These exact wave functions Ψi can be expanded in terms of the complete or-
thonormal set of IPM wavefunctions Φi

Ψi =
∑

j

ajiΦj

where aji are expansion coefficients with a∗
jiaji being the probability of finding

the nucleus with quantum numbers appropriate to Φj if it is in a state described
by Ψi. If H ′ turns out to be very small for some reason, this series expansion
will just be dominated by a single term. In order to find out what the exact wave
functions are, we need to find the values of aji since we already know the IPM
wave functions Φj.
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Take this expansion and substitute it into the full Hamiltonian:

H
∑

j

ajiΦj = Ei

∑

j

ajiΦj.

Now multiply both sides by the conjugate of a particular IPM wave function Φ∗
k,

and then integrate over all space. Using Dirac notation as a shorthand:

〈Φk|H|
∑

j

ajiΦj〉 = Ei〈Φk|
∑

j

ajiΦj〉 = Eiaki.

In the last step, orthogonality between particular IMP wave functions is used.
Just to simplify the notation a little, write Hkj ≡ 〈Φk|H|Φj〉; these quantities
are called matrix elements for reasons that will become clear in two lines of
alegbra.

We now have: ∑

j

Hkjaji = Eiaki.

This is the same as the following matrix equation:




H11 H12 . . .
H21 H22 . . .
...

...
. . .








a1i

a2i
...



 = Ei




a1i

a2i
...





Remember, we have the IPM solutions Φk and if we know the residual interaction
we can therefore calculate the matrix elements Hkj ≡ 〈Φk|H0 + H ′|Φj〉. We
need to find the set of expansion coefficients aji which will tell us the exact
wave function and the energy of the level after the inclusion of the residual
interaction Ei. Both of these can be found be solving this matrix equation,
which is sometimes called the secular equation for the eigenvalues.

The equation only possesses solutions if, the determinant shown here is zero:

∣∣∣∣∣∣∣

H11 − Ei H12 . . .
H21 H22 − Ei . . .
...

...
. . .

∣∣∣∣∣∣∣
= 0

Now, here a big problem. In general, in a nuclear system, there are an infinite
number of Φj, so that the matrix dimensions are also infinite! But the physics of
the problem is used to reduce the dimensions to a finite size. For example, at low
energy we need not consider IPM levels with very high excitation energies. Often
the IPM wave functions are restricted to a particular valence shell appropriate to
the nucleus of interest, e.g. the fp orbitals. This process of reducing the matrix
dimensions is needed not only to make the matrix finite, but also small enough
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for a computer to hold in its memory, and is often referred to as truncation of
the model space.

As an exercise, it is instructive to run through such a calculation for the
simplistic case of two levels, the so-called two-state mixing problem. The de-
terminant is then: ∣∣∣∣

H11 − E H12

H21 H22 − E

∣∣∣∣ = 0

which has the solutions:

E =
1

2

[
H11 + H22 ±

(
(H11 −H22)

2 + 4H21H12

)1/2
]

giving the energies of the two levels after the inclusion of the interaction.
Substituting these two values back into the matrix equation yields the values

of the expansion coefficients for the two wave functions (not difficult to do, but
messy algebra), which turn out to be:

Ψ1 =
(E2 −H22) Φ1 + H12Φ2
[
(E2 −H22)

2 + H2
12

]2 and Ψ2 =
(E1 −H11) Φ2 + H12Φ1
[
(E1 −H11)

2 + H2
12

]2 .

If there is no residual interaction then Hkj = 〈Φk|H0|Φj〉 = Ejδkj. So the
off diagonal matrix elements H12 will be zero, and Ψ1 = Φ1 and Ψ2 = Φ2

i.e. the IPM wave functions are unmixed. If you gradually turned the residual
interactions on, then the values of H12 increase gradually mixing the two IPM
wave functions.

If you have followed the two-state mixing example, you can understand the
essence of many more complicated issues in nuclear physics. Go and read Chapter
1 of Casten’s book Nuclear Structure from a Simple Perspective and Section
3.2.4 in Heyde’s book The Nuclear Shell Model.

In reality matrix equations of very high dimensions must be solved and these
can only be done using numerical methods by computers. You might by now
be wondering why this process is called matrix diagonalization. In essence, by
finding the set of expansion coefficients aji, you have found two matrices which
can be used to reduce the matirx Hkj to a diagonal form (see relevant chapters
of maths texts by Boas or Jordan and Smith):



a11 a12 . . .
a21 a22 . . .
...

...
. . .








H11 H12 . . .
H21 H22 . . .
...

...
. . .








a11 a12 . . .
a21 a22 . . .
...

...
. . .



 =




E1 0 . . .
0 E2 . . .
...

...
. . .





This process can be run in reverse; if you can diagonalize the matrix by some
other method, you can find the matrices of aji. Many numerical methods exist
to diagonalize a large matrix that are employed in shell-model calculations, hence
the name.
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