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Glossary part 1 : DFT for Coulomb systems

According to Lévy and Lieb, for a system of fermions, it is possible to
define an exact functional that relates energy and particle density:

Eexact — E[/O]

In the case of electron systems, the Coulomb interaction is known.
Density Functional Theory (DFT) was created initially (only) for electronic
systems.

The lowest-order approximation for the energy (i.e. Hartree-Fock) is known
but is not the DFT energy! There are also a few exact results for electrons.

Electronic DFT is called ab initio. Nonetheless, existing functionals usually
include empirical parameters.
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The electronic many-body problem

We are concerned with a quantum system governed by a Hamiltonian:

N h2 1 N
. 2 .. :
H— ; —5 Vit ;1 V (i, §) + Vext ()

In the case of nuclei and electrons, clearly:
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Yet, the N-electron problem cannot be solved exactly even though the
Coulomb force is known.
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The Hohenberg-Kohn theorem

The original theorem and its proof can be found in P. Hohenberg, W. Kohn,
Phys. Rev. 136, B864 (1964). They have in mind a system of interacting
fermions (H = T + V) in some external potential V.

a) There exist a functional of the fermion density
Bre[p) = (UIT 4V 4 Vesa[0) = Flpl + [ & Vit (1o

and the part denoted by F is universal (for nuclei, it would be the only part).

b) It holds:

The variational principle is written for the density.
The w.f. may be even too large to write !! (Try as
an exercise to estimate its dimension...)




The constrained search approach by Lévy-Lieb
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Ey = min, (ming_,, (V|H|¥)) = min, E|p|,
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We consider all w.f’s that
correspond to a specific density
with the symbol

v — p

ETPEEIFE

ABCODEFGHI

“instead of finding the tallest
child in the school by lining all of
them in the yard, we just line in
the yard the tallest pupils of
each class...”
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The simplest functional (EDF)

Non-inte_racting uniform gas 1 7= . 312\ /3
(either electrons P = ——¢€ =
or protons+neutrons = symmetric nuclear matter) Vay’

E = /5[,0] d>r

Energy density = &
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Functionals and functional derivative

COO We assume that for any n(x) we can write

—|——f—|—e77] e+ ...
e=0

—I— 677
/ dx.v Functional
derivative
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Analogy with the partial derivative:

OF

OF . |
e:/d:c 5f(a:)677<x) “ 5F—;5f'5fz

OF

Lf + en]

d€ e=0

Equivalent formula:

SF . Flf(@) + ed(e —y)] - Flf(a)] SF . Flf;+ ey = FLfj
5f(y) e—0 € 5fj e—0 €
Practical rules: F — /daj g(a:)f(x) - 5;2) _ g(:U)
OF Oh
Fe[dohlf@] = 5= 5@

Exercise for students:
a) Prove the formulas in these two slides (#7 and #8);
b) Prove: / OF 0g Y 6
F = — -
[@at@. @l - S

(you know it from Euler-Lagrange equation!)




The Kohn-Sham (KS) scheme

We assume that the density can be expressed in terms of single-particle
orbitals, and that the kinetic energy has the simple form:

=Y o) 1-% [ ) (-5t ) e

We have said that the energy must be minimized, but we add a constraint
associated with the fact that we want orbitals that form an orthonormal set
(Lagrange multiplier):

E_Zgi/dgr gb;'k(ﬁ?bm=T+F[p]+/d3fr Vext (7) p(7) Zez/dsrgb )b (7)

The variation of this quantity, (6/6¢*)... = 0 produces a Schrodinger-like equation:

(_ h;z% + 55—112 ext) Cbz("?) 5Z¢z(7?) h¢’l, — €Z¢Z

“DFT is an exactification of |
Hartree-Fock” (W. Kohn).




Glossary part 2: DFT for nuclel

In the case of nuclei, we do not have (yet) a “fundamental
Hamiltonian” to start from. All EDFs are based on an ansatz for the
form of E, and a parameter fit.

All started with the invention of HF with effective forces. At a given
point, these forces have been seen only as a way to “generate” a total
energy from (®|T + V|®). Thus, there is no considerable difference
between HF and KS-DFT.

Skyrme...

...and
covariant

EDFs

Nuclear Physics Summer School
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Skyrme force or “pseudo-potential”

attraction short-range repulsion

1
Uskyrme = to (1 + 20 Py) (71 — 72) + 5151 (1421 P,) (kT O(1y — 12) + 0(ry — T2)k

7“1+7“2)
)k

L L1
-+ tQ (1 _|_CU2PO-) kT . 5(771 — 772)16 + 6t3 (1 —|—5133P0) (5(771 — TQ (

—+ ’LWO (0'1 —|—O'2) ]{TT X 5(7“1 —7“2

e There are velocity-dependent terms which mimic the finite-range.
* The last term is a zero-range spin-orbit.

* In total: 10 free parameters to be fitted (typically).
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Skyrme force as a generator of an EDF

Let us see how it works with a simplified force in the case of even-even

nuclei.
i3 . r1 + T 5 o
Vskyrme = [to =+ 63’0 ( . 9 2)] O(71 — T2)

ESkyrme:%Z@]\V(l—Plg )ig) = Z/d37“1d3r 1 (7)) 85 (Fa) - J6(Fy — 72) (1 = Pag Py Pr) (7)o (72)

Py=1 P, = : Pr = 6(qi,q5)
— %Z/d% o5 (P (7)[to + %Spo‘](l — %5(%,%))@(?7)%(?)

Exercise: add T and (—h—2V2+Uq) S (22
derive the KS equation m ! ’




EDF from the full Vgme (EVEN-EVEN Case)

— (Vl — Vz) produces: ¢V¢ — ‘

Other quadratic terms: ~ V?p = “V2p; + 27 T = Z |ngz\2

The spin operators lead to:

=) 61Ve; x (0']5]0)
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gSkyrme _ cpplpln2 L O pr 4000 T2 4 0(VP) (vp) + VIV
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E = dS’I“ [gkin _I_gSkyrme _I_(c;pairing _I_gCoulomb}

The complete Skyrme EDF including the odd case is complicated.

&= /dgm /d3 > {Cp [polpi + Cflpols? + Cr7 piV2py
0,1

t=

+ C’tVS(V - 8)* + C’tAsst . V32s, + Cy (pym — jt)

=+ CtT <3t Ty — Z Jt,/w‘]t,/ﬂ/>

w,v=x
1 [ i
St - Ft — 5 (Z Jta#ﬂ)
n=x

+Ctv'°7(ptV-Jt+st-V><jt)}

+ CF

Pairing: not discussed here.

% Z Jt,ul/ Jt,y,u]

=z

P.D. Stevenson, M.C. Barton, PPNP 104, 142 (2019)

Coulomb: known. Exchange is often approximated (e.g.: Slater approximation).
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Gogny forces

2
T —=7a]”

UGogny = Z e "I (W;+ B;jP, — H;P, — M;P, P;)

— —

1 + T9

) + ins (0'1 -+ 0'2) . ET X 5(771 — 772)12

« There are two Gaussians with different ranges that are supposed to
create nuclear saturation.

 The introduction of a density-dependent term seems unavoidable.
This suggests that vy is also a pseudo-potential (EDF generator).

 The great advantage of the Gogny force is that it seems adequate
not only for the HF/KS equations but to describe nuclear superfluidity
as well.

Exercise: derive the HF or KS
equation with v equal to the EGogny = (®|T + V|®) = /c‘IGOgny
sum of the two Gaussians
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Fitting the EDF parameters

« Empirical saturation point

« Masses of nuclei X2 (7) = Z

« Charge radii of nuclei

* More pseudo-observables like the equation of state of neutron matter
 More observables: excited states

» A bit outside DFT philosophy: single-particle states and spin-orbit splittings

x-square fitting is one widely used option to obtain the EDF parameters

Increasing number of studies that employ Bayesian techniques
(parameter distributions)
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Status of DFT (short summary)

» Error on masses of the order of 1 MeV.
» (Controlled) predictions of drip lines and super heavy nuclei.
« Trends of charge radii and deformations fairly well reproduced.
« Extrapolation to neutron matter and neutron stars. .
» Steady progress in the study of theoretical errors and of correlations
among EDF parameters.

« Techniques based on symmetry restoration are available.

« Giant resonances, charge-exchange transitions are studied.

» Interest in reactions, large amplitude phenomena like fission.

* Merging with ab initio.

Much about this in the lectures by Iain, Magda.
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Masses and charge radii of atomic nuclei
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Error propagation
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Correlations

Covariance analysis for energy density E, (vaoR) F I il
. . — E,(IVGDR)
functionals and instabilities
X Roca-Maza', N Paar’ and G Colo' m.1uv22é>pR0; °
E,(ISGMR)
EX(ISGOE: |
elpo) | :
. . . E,(IVGQR) b
When a strong constraint is imposed e
on A, the -correlations with other oo
properties become very small. e
EX(ISGC;:;
e(po) ’
)
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Pearson Correlation Coefficient

20



The drip lines
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Fig. 4. The comparison of the uncertainties in the definition of two-proton and two-neutron drip lines obtained in CDFT and SDFT. The shaded areas are defined by the
/-) extremes of the predictions of the corresponding drip lines obtained with different parametrizations. The blue shaded area shows the area where the CDFT and SDFT
results overlap. Non-overlapping regions are shown by dark yellow and plum colors for SDFT and CDFT, respectively. The results of the SDFT calculations are taken from the
' N F N supplement to Ref. [2]. The two-neutron drip lines obtained by microscopic + macroscopic (FRDM [3]) and Gogny D1S DFT [5] calculations are shown by red and blue lines,

respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this Letter.)
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In the case of axial quadrupole deformations:
How to not get lost SR .
B Intrinsic quadrupole

moment (Q) ~

Ao \ it There are non-axial deformations:
SR, = R <_ () — Ry = Ro\/ BCOS (7 - _)
Figure from J.
~ Manders’ blog ™ T D 2m
SRy =R(5:5) = Ro = Roy[ - fcos (” ! ?)

Some nuclei display “paradigmatic” OR, = R(0,0) — Ry = Ry /ngs ~
spectra: (i) spherical nuclei which dm
vibrate or (i) deformed nuclei |
which rotate
ORIy (g SR
27
6* )
Interest in OTHER
024 deformations
2+ 4 BEAE o s~ News Sport Weather Shop Eath Travel
2+ NEWS
Nuclear PhySiCS Pear-shaped nuclei discovery challenges
Vibrational spectra Rotational spectra time travel hopes




How to not get lost

=7 Figure from J.
Manders’ blog

CONSTRAINED calculations:
H =H—)\Q

They provide the whole energy
surface.
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Symmetry restoration in the lab frame
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Boyang Sun, Saketh Bhattlprolu and James M. Lattimer
Department of Physics € Astmno magrsity, Stony Brook, NY 11794 USA

This paper compiles the model parameters and zero-temperature properties of an extensive col-
lection of published theoretical nuclear interactions, including 255 non-relativistic (Skyrme-like)
forces, 270 relativistic mean field (RMF) and point-coupling (RMF-PC) forces, and 13 Gogny-like
forces. This forms the most exhaustive tabulation of model parameters to date. The properties

In spite of the “proliferation” of EDFs, one should keep in mind that
many of them have been built with limited purpose(s), or are
outdated, or have been improved by the same authors who first

introduced them.
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