Lecture 2: Nuclear-physics ingredients for heavy-element nucleosynthesis

Photo credit: NASA

Friday 16 Aug 2024

Ann-Cecilie Larsen, Department of Physics, University of Oslo, Norway

a.c.larsen@fys.uio.no

Overview of the lectures 🔀

- **Yesterday**: A first introduction to nuclear astrophysics, with focus on heavy-element nucleosynthesis
- **Today**: (Some of the) Needed nuclear-physics input for heavyelement nucleosynthesis, brief intro to experimental methods to indirectly measure neutron-capture rates

Recap: how to "cook" heavy elements 🔍

Slow neutron-capture (s) process (\approx 50%) Rapid neutron-capture (r) process (\approx 50%)

p process: proton capture, photodisintegration, vp-process, ... (~0.1-1%)

Nuclear-physics needs for the s process

- Measure (n,γ) cross sections => calculate (n,γ) reaction rates
- Measure β^- decay half lives => calculate β^- decay rates

Almost all the needed nuclear-physics data are or can be measured, as the relevant nuclei are on or close to the valley of stability

Review article on the *s* process: Käppeler et al., Rev. Mod. Phys. 83, 157 (2011)

 $\tau_{\beta} < \tau_{n\nu}$

 $\lambda_{R_{-}} >> \lambda_{n_{\nu}}$

In general, when an unstable nucleus is made in the *s* process, the following condition is fulfilled:

Except at the

branch points,

where $\lambda_{\beta} \approx \lambda_{n}$

Neutron-capture measurements for the s process

- Shoot neutrons with a known flux & energy on a sample (isotopically enriched), measure transmission and γ rays
- Place your sample in a neutron beam, then measure γ rays from the produced radioactive nuclei afterwards (activation technique)

Facilities: n_TOF @ CERN, GELINA, Los Alamos National Lab,...

See Sec. IIA in Käppeler et al., Rev. Mod. Phys. 83, 157 (2011)

An example of a branch-point nucleus: ⁶³Ni 🦿

Lederer et al., PRL 110, 022501 (2013), Weigand et al., PRC 92, 045810 (2015), Crespo Campo et al., PRC 94, 044321 (2016)

"Talys" [or TALYS]: open-source nuclear reaction code https://nds.iaea.org/talys/

 10^{3}

10⁴

neutron energy (eV)

10⁶

10⁵

Nuclear-physics needs for the r process

Snapshots, reaction network, neutron-star collision trajectory Mumpower, Surman, McLaughlin, Aprahamian, Prog.Part. Nucl. Phys. 86, 86 (2016)

Nuclear-physics needs for the r process

- Masses!!! -> To get Q-values, separation energies
- β^- decay rates!
- (n,γ) rates!
- Fission rates!

From an experimental point of view (at least in my view), the hardest ones to measure are the (n,γ) and the fission rates

If we cannot measure neutron-capture cross sections...

(Wolfenstein-)Hauser-Feshbach theory -> "compound nucleus" picture of Bohr [W. Hauser and H. Feshbach, Phys. Rev. 87, 366 (1952)]

If we cannot measure neutron-capture cross sections...

Why are nuclear level densities and γ -ray strength functions important for (n, γ) reaction rates?

Matrix element for electric/magnetic decay in the case of gamma radiation

What are nuclear level densities and γ -ray strength functions?

Level density:

$$\rho = \rho(E_x, J, \pi) = \frac{N(E_x, J, \pi)}{\Delta E_x}$$
$$\rho(E_x) = \sum_J \sum_{\pi} \rho(E_x, J, \pi)$$

Gamma-ray strength function: [Bartholomew et al., chapter 4, Advances in Nuclear Physics 7, 229 (1972)]

$$f_{XL}(E_{\gamma}, E_i, J_i, \pi_i) = \frac{\langle \Gamma_{\gamma}^{XL} \rangle (E_{\gamma}, E_i, J_i, \pi_i)}{E_{\gamma}^{2L+1}} \rho(E_i, J_i, \pi_i)$$

Also called photon strength function, radiative strength function, ... E1 and M1 transitions dominate at high excitation energies Both these quantities are useful when we deal with *many* levels and *many* transitions

... but don't we know how to calculate level densities and γ -ray strength functions? \bigcirc

13

Things are going in the right direction!

Hilaire, Goriely, Péru, Gosselin, PLB 843, 137989 (2023)

Things are going in the right direction!

Hilaire, Goriely, Péru, Gosselin, PLB 843, 137989 (2023)

Jenny Finrud's Master thesis (2024): KSHELL calculations. Exp. data from Maria Markova et al., PRC 106, 034322 (2022)

Theoretical ¹⁵⁷Sm(n, γ) and ¹⁷⁵Sm(n, γ) reaction rates

Theoretical ¹⁵⁷Sm(n, γ) and ¹⁷⁵Sm(n, γ) reaction rates **Question:** 10^{9} ¹⁵⁷Sm(n,γ) Reaction rate (cm³ s⁻¹ mol ⁻¹ Why can't we measure these cross sections directly? ¹⁷⁵Sm(n,γ) 10⁸ 0 m 10^{7} °- $N_{A}\langle\sigma v\rangle$ (cm³ 10⁶ 10^{7} 10⁵ 10^4

How to treat these uncertainties?

1) Monte Carlo approach: e.g. Mumpower et al., Prog. Part. Nucl. Phys. 86, 86 (2016),

Denissenkov et al., J. Phys. G: Nucl. Part. Phys. 45, 055203 (2018)

2) Systematic treatment, masses & β -decay, many trajectories: Kullmann et al., MNRAS 523, 2551 (2023)

3) Systematic treatment, level density and gamma-strength: Pogliano & Larsen, Phys. Rev. C 108, 025807 (2023)

Experimental efforts, neutron-capture reaction rates on neutron-rich nuclei

Direct approach:

combine a neutron source with a storage ring! [Reifarth et al., Phys. Rev. Accel. Beams **20**, 044701 (2017)]

Indirect approaches:

- Surrogate method for direct capture [e.g. Gaudefroy et al, Eur. Phys. J. A **27**, 309 (2006), Jones et al., Nature **465**, 454 (2010), Kozub et al., PRL **109**, 172501 (2012), ++]

Experimental efforts, neutron-capture reaction rates on neutron-rich nuclei

Direct approach:

combine a neutron source with a storage ring! [Reifarth et al., Phys. Rev. Accel. Beams **20**, 044701 (2017)]

Indirect approaches:

- Surrogate method for direct capture [e.g. Gaudefroy et al, Eur. Phys. J. A **27**, 309 (2006), Jones et al., Nature **465**, 454 (2010), Kozub et al., PRL **109**, 172501 (2012), ++]

Experimental efforts, neutron-capture reaction rates on neutron-rich nuclei

Indirect approaches:

- Surrogate method for direct capture

[e.g. Gaudefroy et al, Eur. Phys. J. A 27, 309 (2006), Jones et al., Nature

Direct approach:

combine a neutron source with a storage ring! [Reifarth et al., Phys. Rev. Accel. Beams **20**, 044701 (2017)]

Experiments at the Oslo Cyclotron Lab, Univ. of Oslo

SiRi: 8x8 Si ΔE -E particle detectors (\approx 9% of 4 π) [Guttormsen et

al., NIM A 648,

168 (2011)]

CACTUS: 26 (28) collimated

Nal(Tl)

crystals,

5″ x 5″

Scattering SISAK chamber Switching Analyzing magnet CACTUS/SiRi magnet **Radiation hardness** Mini-orange a atra matan Switching Nal(TI) magnet 01 Si ∆E-E α D1 telescope Y ³He 40 – 54° MC-35 Scanditronix cyclotron **Target nucleus**

Experiments at the Oslo Cyclotron Lab, Univ. of Oslo

26 (28) collimated Nal(Tl) crystals, 5" x 5"

CACTUS:

SiRi: 8x8 Si ΔE-E particle detectors (≈9% of 4π) [Guttormsen et al., NIM A 648, 168 (2011)]

Experiments at the Oslo Cyclotron Lab, Univ. of Oslo

The Oslo method – a crash course 😎

- 0. Get yourself an (Eγ,E_x) matrix (>20 000 coincidences)
- 1. Correct for the γ -detector response [Guttormsen et al., NIM A 374, 371 (1996)]
- 2. Extract *distribution of* primary γ s for each E_x [Guttormsen et al., NIM A 255, 518 (1987)]
- 3. Obtain level density and γ -strength from primary γ rays [Schiller et al., NIM A 447, 498 (2000)]
- 4. Normalize & evaluate systematic errors [Schiller et al., NIM A 447, 498 (2000),

Larsen et al., PRC 83, 034315 (2011)]

The Oslo method – a crash course 😎

- 0. Get yourself an (Eγ,E_x) matrix (>20 000 coincidences)
- 1. Correct for the γ-detector response [Guttormser Data an
- 2. Extract distribution of primary γs for each E_x [Gu
- 3. Obtain level density and γ -strength from primary A
- 4. Normalize & evaluate systematic errors [Schiller Larsen *et al.*, PRC **83**, 034315 (2011)]

Data and references (if something is missing, please let us know!):
 <u>https://ocl.uio.no/compilation/</u>
 Analysis codes and tools:
 <u>https://github.com/oslocyclotronlab/oslo-method-software</u>
 Python version OMpy (work in progress):
 <u>https://github.com/oslocyclotronlab/ompy</u> 25

Measuring level density and γ -ray strength

Ansatz:

[generalization of Fermi's Golden Rule]

Factorize the primary γ matrix:

 $P(E_{\gamma}, E_{\chi}) \propto \rho(E_{\chi} - E_{\gamma})\mathcal{T}(E_{\gamma})$

where the gamma-decay strength (for dipole radiation)

 $f(E_{\gamma}) = \mathcal{T}(E_{\gamma})/2\pi E_{\gamma}^3$

Two important assumptions:

- The γ decay takes place a long time after the level is formed

-> the **Brink hypothesis**

[Brink, Doctoral thesis, Oxford (1955) and Axel, Phys. Rev. **126**, 671 (1962)]

[Schiller et al., NIM A 447, 498 (2000)]

Using the data to calculate (n,γ) reaction rates

[Larsen et al., PRC **108**, 025804 (2023)]

Using the data to calculate (n,γ) reaction rates

[Larsen et al., PRC 108, 025804 (2023)]

Using the data to calculate (n,γ) reaction rates

[Larsen et al., PRC 108, 025804 (2023)]

Surprise! The low-energy upbend

VOLUME 93, NUMBER 14

PHYSICAL REVIEW LETTERS

week ending 1 OCTOBER 2004

Large Enhancement of Radiative Strength for Soft Transitions in the Quasicontinuum

A. Voinov,^{1,2,*} E. Algin,^{3,4,5,6} U. Agvaanluvsan,^{3,4} T. Belgya,⁷ R. Chankova,⁸ M. Guttormsen,⁸ G. E. Mitchell,^{4,5} J. Rekstad,⁸ A. Schiller,^{3,†} and S. Siem⁸

 ¹Frank Laboratory of Neutron Physics, Joint Institute of Nuclear Research, 141980 Dubna, Moscow region, Russia ²Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA ³Lawrence Livermore National Laboratory, L-414, 7000 East Avenue, Livermore, California 94551, USA ⁴North Carolina State University, Raleigh, North Carolina 27695, USA ⁵Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA ⁶Department of Physics, Osmangazi University, Meselik, Eskisehir, 26480 Turkey
 ⁷Institute of Isotope and Surface Chemistry, Chemical Research Centre HAS, P.O. Box 77, H-1525 Budapest, Hungary ⁸Department of Physics, University of Oslo, N-0316 Oslo, Norway (Received 26 April 2004; published 29 September 2004)

Radiative strength functions (RSFs) for the ^{56,57}Fe nuclei below the separation energy are obtained from the ⁵⁷Fe(³He, $\alpha\gamma$)⁵⁶Fe and ⁵⁷Fe(³He, ³He' γ)⁵⁷Fe reactions, respectively. An enhancement of more than a factor of 10 over common theoretical models of the soft ($E_{\gamma} \leq 2$ MeV) RSF for transitions in the quasicontinuum (several MeV above the yrast line) is observed. Two-step cascade intensities with soft primary transitions from the ⁵⁶Fe($n, 2\gamma$)⁵⁷Fe reaction confirm the enhancement.

DOI: 10.1103/PhysRevLett.93.142504

PACS numbers: 25.40.Lw, 25.20.Lj, 25.55.Hp, 27.40.+z

Surprise! The low-energy upbend

Impact on *r*-process (n, γ) reaction rates?

[A.C. Larsen and S. Goriely, Phys. Rev. C 82, 014318 (2010)]

Impact on *r*-process (n, γ) reaction rates?

Overview of indirect experiments, unstable nuclei

- Surrogate method, direct capture
- Surrogate method, compound capture
- Coulomb dissociation
- Oslo method in inverse kinematics
- $\beta\text{-Oslo}$ method

More details in the refs on the slides, summarized in Larsen et <u>https://doi.org/10.1016/j.ppnp.2019.04.002</u>

Overview of indirect experiments, unstable nuclei

- Surrogate method, direct capture
- Surrogate method, compound capture
- Coulomb dissociation
- Oslo method in inverse kinematics
- $\beta\text{-Oslo}$ method

More details in the refs on the slides, summarized in Larsen et al., PPNP 107, 69 (2019) https://doi.org/10.1016/j.ppnp.2019.04.002

Surrogate method, direct capture via (d,p)

- Direct capture: "fast" ~10⁻²² s (similar to direct reaction), ≈pure wave functions
- Angular distributions of protons => dominant s.p. orbitals => spins

Surrogate method, compound capture

- Compound capture: "long" time to thermalize (half life ~10⁻¹⁵⁻¹⁸ s), very complicated wave functions
- By gating on discrete levels in the residual nucleus, one can select different decay paths representing different initial spins

Coulomb dissociation

• The radioactive nucleus gets excited by the Coulomb field of a high-Z target, leading to a (γ ,n) reaction => γ -strength function above S_n

Coulomb dissociation and derived ⁵⁹Fe(n, γ) rate

• Uberseder et al., PRL 112, 211101 (2014)

The Oslo method in inverse kinematics

Proof-of-principle: ⁸⁶Kr(d,pγ)⁸⁷Kr, inverse kinematics iThemba LABS, April/May 2015

MSc thesis of Vetle W. Ingeberg, http://urn.nb.no/URN:NBN:no-56444

「hemba ABS Ingeberg et al., Eur. Phys. J. A 56, 68 (2020) **Proof-of-principle**: 10⁻⁶ d(⁸⁶Kr,p)⁸⁷Kr (LaBr₃:Ce) d(⁸⁶Kr,p)⁸⁷Kr (LaBr,:Ce) ⁸⁶Kr(d,pγ)⁸⁷Kr, From neutron res. data hell Model calculations 10³ inverse kinematics **CT** interpolation ⁸⁶Kr(γ,γ'), R. Schwengner et. al. **Known levels** ⁸⁶Kr(y,n), R. Raut et. al. Level density p (E) (MeV⁻¹) 0 0 iThemba LABS, HFB+QRPA, S. Goriely et a April/May 2015 10 ||Ե 10 12 10 14 6 8 0 2 3 γ-ray energy (MeV) Excitation energy E (MeV) 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 MSc thesis of Vetle W. Ingeberg, LaBr_a(Ce) CLOVER γ-ray energy [keV] http://urn.nb.no/URN:NBN:no-56444

The Oslo method in inverse kinematics

The Oslo method in inverse kinematics

HIE-ISOLDE experiment:

7-14 November 2016, ${}^{66}Ni(d,p\gamma){}^{67}Ni$ in inverse kinematics [Similar to Diriken et al., PRC 91, 054321 (2015) but with \approx 5MeV/nucleon] MINIBALL array [P. Reiter et al., NPA 701, 209 (2002)] + two 3.5"x8" LaBr₃(Ce) detectors from Oslo + CD detectors

The beta-Oslo method

Main idea:

Because the Q-value quickly gets large for neutron-rich nuclei (comparable to S_n):

populate highly excited states in the daughter nucleus by β^{-} decay of its mother

Recipe:

1) Implant a neutron-rich nucleus inside a *highly efficient* ($\approx 4\pi$), *segmented* totalabsorption spectrometer (preferably with $Q_{\beta} \approx S_n$)

2) Measure β^- in coincidence with *all* γ rays from the daughter nucleus

3) Apply the Oslo method to the $(E_{x,}E_{\gamma})$ matrix to extract level density & γ - strength

A quick reminder about $\beta^{\scriptscriptstyle -}$ decay & selection rules

- Superallowed (Fermi) transitions: $\Delta J = 0$; $\Delta \pi = no$
- Allowed (Gamow-Teller): $\Delta J = 0,1$; $\Delta \pi = no$
- First forbidden: $\Delta J = 0, 1, 2; \Delta \pi = yes$
- Second forbidden: $\Delta J = 1,2,3$; $\Delta \pi = no$
 - **Questions:**
 - Which initial spins and parity are populated after Gamow-Teller beta- decay from the ⁷⁶Ga ground state (spin/parity 2⁻) into ⁷⁶Ge?
 - 2) Which final spins and parity are reached in ⁷⁶Ge after one E1 transition?
 - 3) Same as 2) but for one M1 transition?

Figure from Wikipedia

The beta-Oslo method

Segments give individual γ rays, the sum of all gives E_x

(b) Photomultiplier tubes

(a) Beta decay, ⁷⁶Ga

NSCL +

(c) The Summing Nal detector (SuN)

@ NSCL/MSU [A. Simon, S.J. Quinn, A. Spyrou et al., NIM A 703, 16 (2013)]

Larsen et al., PPNP 107, 69 (2019)

The beta-Oslo method

Segments give individual γ rays, the sum of all gives E_x

The beta-Oslo method: $^{70}Co \rightarrow ^{70}Ni$

Discretionary beam time @ NSCL/MSU, Feb 2015;⁷⁰Co beta-decaying into ⁷⁰Ni

⁸⁶Kr primary beam, 140 MeV/nucleon
 ⁷⁰Co implanted on DSSD detector in SuN

⁷⁰Co T_{1/2}: 105 ms ⁷⁰Co $|\pi = 6^{-1}$ Beta-decay Q-value: 12.3 MeV S_n, ⁷⁰Ni: 7.3 MeV

Guestion:

Which initial spins and parity are populated after Gamow-Teller beta- decay into ⁷⁰Ni?

[S.N. Liddick A. Spyrou, B.P. Crider, F. Naqvi, A.C. Larsen, M. Guttormsen et al., PRL **116**, 242502 (2016)]

The beta-Oslo method: ⁷⁰Co \rightarrow ⁷⁰Ni

PRL 116, 242502 (2016)

PHYSICAL REVIEW LETTERS

week ending 17 JUNE 2016

S

Experimental Neutron Capture Rate Constraint Far from Stability

S. N. Liddick, ^{1,2} A. Spyrou, ^{1,3,4} B. P. Crider, ¹ F. Naqvi, ¹ A. C. Larsen, ⁵ M. Guttormsen, ⁵ M. Mumpower, ^{6,7}
R. Surman, ⁶ G. Perdikakis, ^{8,1,4} D. L. Bleuel, ⁹ A. Couture, ¹⁰ L. Crespo Campo, ⁵ A. C. Dombos, ^{1,3,4} R. Lewis, ^{1,2}
S. Mosby, ¹⁰ S. Nikas, ^{8,4} C. J. Prokop, ^{1,2} T. Renstrom, ⁵ B. Rubio, ¹¹ S. Siem, ⁵ and S. J. Quinn^{1,3,4}
¹National Superconducting Cyclotron Laboratory (NSCL), Michigan State University, East Lansing, Michigan 48824, USA
²Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
³Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
⁴Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, Michigan 48824, USA
⁶Department of Physics, University of Oslo, N-0316 Oslo, Norway
⁶Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
⁷Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
⁸Central Michigan University, Mount Pleasant, Michigan 48859, USA
⁹Lawrence Livermore National Laboratory, Los Alamos, New Mexico 87545, USA
¹¹IFIC, CSIC-Universidad de Valencia, 46071 Valencia, Spain (Received 5 January 2016; published 16 June 2016)

The beta-Oslo method: $^{70}Co \rightarrow ^{70}Ni$

The beta-Oslo method: ⁷⁰Ni results

Improved data analysis: deconvolution of the E_x axis as well [M. Guttormsen et al., in preparation] [Larsen, Midtbø, Guttormsen, Renstrøm, Liddick, Spyrou et al., PRC **97**, 054329 (2018)]

The beta-Oslo and Oslo method: ⁵¹Ti

Discretionary beam time @ NSCL/MSU, February 2015; ⁵¹Sc beta-decaying into ⁵¹Ti Q-value, beta-decay: 6.503 MeV; $S_n = 6.372$ MeV. Also: ⁵⁰Ti(d,p γ)⁵¹Ti @ OCL.

The beta-Oslo and Oslo method: ⁵¹Ti

Almost the same spin range of the final levels!

Shell-model calculations by Jørgen E. Midtbø using KSHELL (Shimizu, https://arxiv.org/abs/1310.5431)

[S.N. Liddick, A.C. Larsen, M. Guttormsen et al., PRC 100, 024624 (2019)]

The samarium experiment @ Argonne National Lab

CARIBU: 252 Cf spontaneous fission source \rightarrow 156,158 Pm. SuN with SuNTAN (tape station) and a fiber detector for the electrons

[CARIBU: G. Savard, et al, Nucl. Instr. Methods Phys. Res. B 266, 4086 (2008)]

The samarium experiment @ Argonne National Lab

¹⁵⁶Pm -> ¹⁵⁶Sm: Q-value = 5.20 MeV, S_n = 7.24 MeV, $T_{1/2}$ = 26.7s ¹⁵⁸Pm -> ¹⁵⁸Sm: Q-value = 6.16 MeV, S_n = 6.64 MeV, $T_{1/2}$ = 4.8 s

SUPER-preliminary results, ^{156,158}Sm

Deformation (beta2) ≈ 0.34-0.35 [Goriely, Chamel, and Pearson, PRL 102, 152503 (2009)]

Summary – key points 📣

- Experimental data is needed to help constrain (n,γ) rates for unstable nuclei
- A low-energy enhancement in the γ strength function may increase (n,γ) rates for neutron-rich nuclei
- There are several methods that can be applied to obtain (n,γ) rates indirectly, such as the surrogate method, Coulomb dissociation, the Oslo method in inverse kinematics, and the β-Oslo method

Picture from http://www.opnlttr.com/sites/default/files/cattura.png

