

Nuclear Physics Outreach

Christian Aa. Diget, Katherine Leech, Joel Richardson, Sophie Abrahams University of York

Science and Technology Facilities Council

What is outreach?

What is Outreach?

Public engagement describes the myriad of ways in which the activity and benefits of research can be shared with the public.

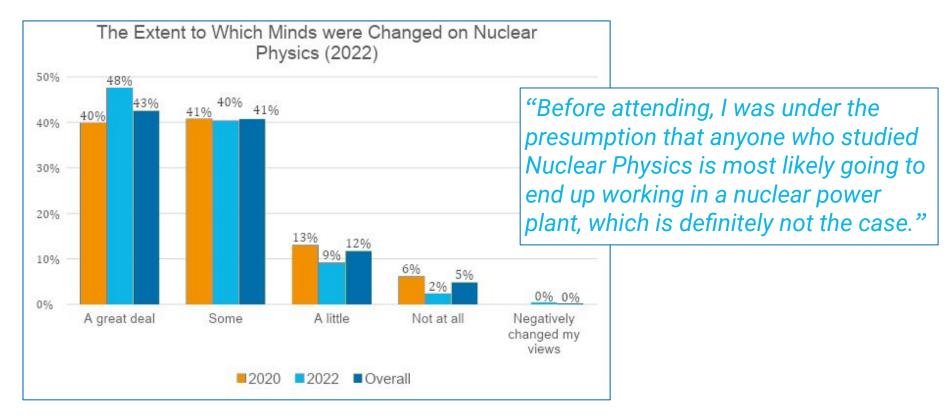
Engagement is by definition a two-way process, involving interaction and listening, with the goal of generating mutual benefit.

Is outreach the same as public engagement?

For example...

- **Presentations** and talks for the public
- Interactive discussion formats eg public debate
- Working with the media, eg writing for the non-specialist, broadcast, social media
- Exhibition stands at festivals or events
- Workshops and interactive activities
- Online and in-person courses
- **Dialogue** exploring the future direction of a particular research topic or **collaborative co-inquiry** research, eg with the public involved in shaping the research question, design and delivery as co-researchers

Challenge assumptions - on both sides!


- Nuclear image has an image issue, communicating work in nuclear physics helps challenge the public's assumptions
- Easy to lose perspective on why your research matters. Discussing it with the public can help you examine your assumptions and introduce fresh perspectives
- Reignite your passion for your area telling the public why it's interesting reminds you why it's interesting!

Vitae 2010

Build trust

- Trust between the public and researchers can break down (eg over GM crops)
- Involving the public in discussions of emerging research areas can help avoid such situations
- Help researchers think through the social and ethical implications of their work
 - Nuclear power
 - Nuclear medicine
- Improve relationship between university and neighbour

Vitae 2010

Raise aspirations

- Inspiring the next generation of students to go to university
 - And maybe consider doing nuclear physics
- Suggested 150,000 additional researchers and technicians needed

Vitae 2010, CASE 2023

Funding

• Public funds much of the research in universities and research institutes

• They should know how the money is being spent

- The STFC recognise the importance of public engagement and ask applicants to detail how they will do this in grant proposals
 - Offer public engagement grants readily accessible to early career researchers
 - Spark award

Vitae 2010

Audiences

- On your flip chart paper, list as many **different audiences** that you can think of that you'd want to engage with (not just the "general public")
- For each audience you've written, list the **different aims** you'd want to achieve by engaging with these different groups

A little bit about research

Life as a researcher Killing stars and cancer cells

- Exploding stars:
 - Blowing up stars with nuclear reactions.
 - Recreating the same conditions in accelerators around the world
- Curing Cancer:
 - Delivering destructive radiation directly to the cancer
 - Technologies for new pharmaceuticals

Elements and Isotopes Nucleons (A), protons (Z), and neutrons (N)

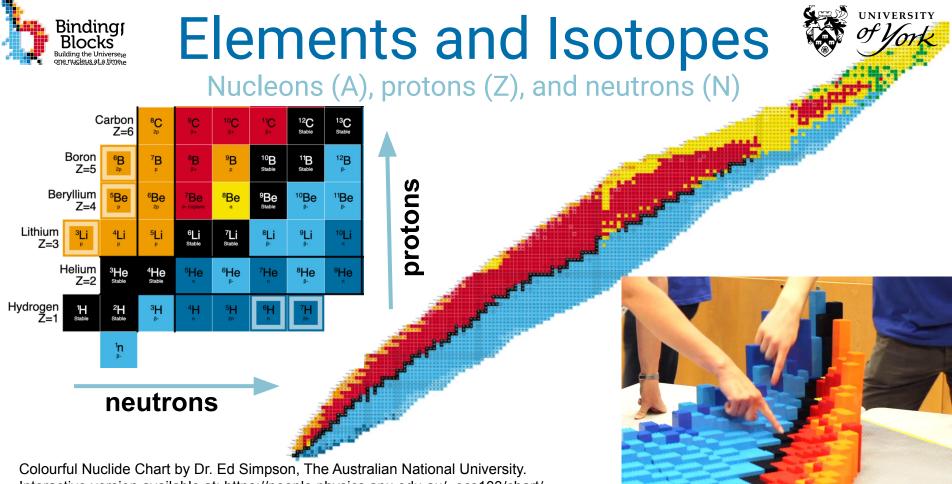
																	Fluori	ne		Supply risk 📕 🗲
H		Periodic Table															C.N.	Key isotopes	¹⁹ F	E
Li 3	Be 4	The Royal Society of Chemistry's interactive periodic table features history, alchemy, podcasts, videos, and data trends across the periodic table. Click the tabs at the top to explore each section. Use the buttons above to change your view of the periodic table and view Murray Robertson's stunning Visual Elements artwork. Click each element to read detailed information.										B 5	C	N 7	O 8			Electron configuration Density (g cm ⁻³)	[He] 2s ² 2p ⁵ 0.001553	Fluorine
Na 11	Mg 12											Al 13	Si 14	P 15	S 16			1 st ionisation energy	1681.045 kJ mol ⁻¹	9 18.998
K 19	Ca 20	Sc 21	Ti 22	V 23	Cr 24	Mn 25	Fe 26	Co 27	Ni 28	Cu 29	Zn 30	Ga 31	Ge 32	As 33	Se 34		Magne	esium	Supply risk 📕 🖣	
Rb 37	Sr 38	Y 39	Zr 40	Nb 41	Mo 42	Tc 43	Ru 44	Rh 45	Pd 46	Ag 47	Cd 48	In 49	Sn 50	Sb 51	Te 52			Key isotopes	²⁴ Mg	Ma
Cs 55	Ba 56	La 57	Hf	Ta 73	W 74	Re 75	Os 76	lr 77	Pt 78	Au 79	Hg 80	Tl 81	Pb 82	Bi 83	Po 84	/		Electron configuration	[Ne] 3s ²	Magnesium
Fr 87	Ra	Ac	Rf 104	Db 105	Sg	Bh 107	Hs 108	Mt 109	Ds 110	Rg	Cn	Nh 113	Fl	Mc	Lv	•		Density (g cm ⁻³) 1 st ionisation energy	737.750 kJ mol ⁻¹	12 24.305
		Co										Er			In					
		Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Some elements only ha 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Some elements only ha Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Single naturally occurring																		

Periodic table taken from Royal Society of Chemistry. Interactive version available at: https://www.rsc.org/periodic-table

Some elements only have a single naturally occurring isotope, some have several.

Elements and Isotopes Nucleons (A), protons (Z), and neutrons (N)

~ 10⁻¹⁵ m


(fm)

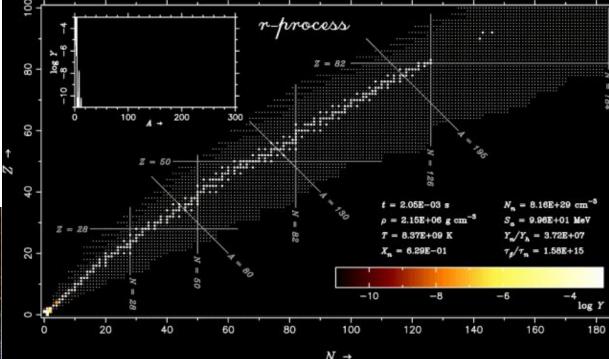
Nucleus:

S

H		Pe	rioc	dic T	able	e											He 2	Atom		Nucleus is ~ 10 ⁻¹⁵ m			
Li 3	Be 4	podcasts, videos, and data trends across the periodic table. Click the tabs at the top to																					
Na 11	Mg 12	explore each section. Use the buttons above to change your view of the periodic table and view Murray Robertson's stunning Visual Elements artwork. Click each element to read detailed information.										Al 13	Si 14	P 15	S 16	Cl 17	Ar 18	¢\$	63				
K	Ca	Sc 21	Ti	V 23	Cr 24	Mn 25	Fe 26	Co 27	Ni 28	Cu 29	Zn 30	Ga 31	Ge 32	As 33	Se 34	Br 35	Kr 36	Electron	Electron cloud				
Rb 37	Sr 38	Y 39	Zr 40	Nb 41	Mo 42	Tc 43	Ru 44	Rh 45	Pd 46	Ag 47	Cd 48	In 49	50 50	55 51	Te 52	53 53	Xe 54	is ~ 10 ⁻¹⁰ m		protons neutrons			
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Ро	At	Rn						
55 Fr 87	56 Ra 88	57 Ac 89	72 Rf 104	73 Db 105	74 Sg 106	75 Bh 107	76 Hs 108	77 Mt 109	78 Ds 110	79 Rg 111	80 Cn 112	81 Nh 113	82 Fl 114	83 Mc 115	84 Lv 116	85 Ts 117	86 Og 118	Me:	~ 1 m				
		Ce 58	Pr 59	Nd 60	Pm 61	Sm 62	Eu 63	Gd 64	Tb 65	Dy 66	Ho 67	Er 68	Tm 69	Yb 70	Lu 71			Human cell:	~ 10 ⁻⁵	m (10 µm)			
		Th 90	Pa 91	U 92	Np 93	Pu 94	Am 95	Cm 96	Bk 97	Cf 98	Es 99	Fm 100	Md 101	No 102	Lr 103			Atom:	~ 10 ⁻¹⁰	^o m (Å)			

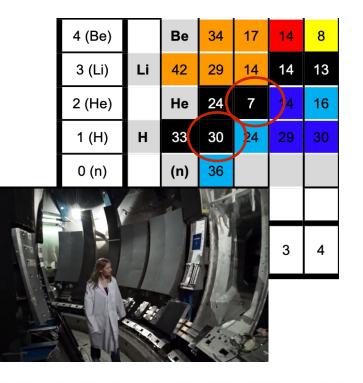
Periodic table taken from Royal Society of Chemistry. Interactive version available at: https://www.rsc.org/periodic-table

Interactive version available at: https://people.physics.anu.edu.au/~ecs103/chart/


Creating Elements

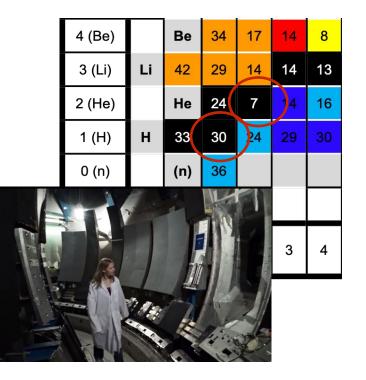
New elements in stars (in neutron-star mergers)

- Neutron absorption: 58 Fe + n $\rightarrow {}^{59}$ Fe (Z=26) \rightarrow new isotope
- Beta minus decay: $n \rightarrow p + e^- + v_e^ \rightarrow new element$



Creating Elements

The first elements: energy from fusion to helium


- Nuclear energies from Einstein's formula: E=mc²
- ~ 1 kg * (299,792,458 m/s)²
 ~ 90,000,000,000,000,000
- Deuterium fusion from just 1L of water: 15 GJ
- Huge destructive potential in cancer treatments

Creating Elements

The first elements: energy from fusion to helium

Fusion energy (D + D \rightarrow ⁴He + E): M_D = 2.014102 u and M_{4He} = 4.002603 u (u = 1.661 \cdot 10⁻²⁷kg, c = 299,792,458 m/s)

E =
$$2*M_Dc^2 - M_{He}c^2 = 0.025601 uc^2$$

= $3.8*10^{-12} J$

= 3.8 pJ (excess energy difference)

E (4kg D) = 0.025601kg * (299,792,458m/s)² = 2301 TJ E (1kg D) = 2301 TJ / 4 = 575 TJ.

From deuterium in 1L of water:

• 1kg * 2/18 * 0.00023 * 575 TJ/kg = 15 GJ

Binding Blocks From Stars to Medicine

Radioactive decay, isotopes and energy:

- Nuclear energy
- Diagnostics and cancer treatment
- Security and environment

Radiation, accelerators, nuclear medicine, fission and fusion, the structure of the nucleus, and new chemical elements. Roy

D

armstadtium			Supply risk 📕	<	
Key isotopes	²⁸¹ Ds				
Electron configuration	[Rn] 5f ¹⁴ 6d ⁹	⁹ 7s ¹	Ds		
Nihonium			Sup	oply risk 📃	<
Key isoto	pes	²⁸⁶ Nh			
	configuration	[Rn] 5f ¹⁴ 60	1 ¹⁰ 7s ² 7p ¹	Nh	
📲 Oga	nesson	l		Su	pply risk 🔳 <
Altering The	Key isotope	S	²⁹⁴ Og		0
uclear	Electron cor	nfiguration	[Rn] 5f ¹⁴ 6d ¹⁰ 7s	² 7p ⁶	Ug
ion, the 🛛 🕵 🛸	Density (g c	m ⁻³)	Unknown		Oganesson
and 🛛 🔼	1 st ionisatio	n energy	-		118 [294]

Royal Society of Chemistry Periodic table

- Using radiopharmaceuticals and combination drugs for therapy (225Ac) and diagnostics (PET) theranostics.
- **Targeted Alpha Therapy** selectively killing both localised tumours and delocalised cancers by delivering the radiation directly to the cancer cell.
- Delivering the alpha energy over a very short range, creating double-stranded DNA breakages.

Actin	ium		Supply	risk 🔳 <		
AL.	Key isotopes	²²⁷ Ac				
NOT	Electron configuration	[Rn] 6d ¹ 7s ²		AC		
- U.	Density (g cm ⁻³)	10	Actinium			
V VIV	1 st ionisation energy	498.830 kJ mol ⁻¹	89	[227]		

	²¹⁶ Ac	²¹⁷ Ac	²¹⁸ Ac	²¹⁹ Ac	²²⁰ Ac	²²¹ Ac	²²² Ac	²²³ Ac	²²⁴ Ac _{β+}	²²⁵ Ac
	²¹⁵ Ra	²¹⁶ Ra	²¹⁷ Ra	²¹⁸ Ra	²¹⁹ Ra °	²²⁰ Ra	²²¹ Ra	²²² Ra	²²³ ,a	²²⁴ Ra ª
	²¹⁴ Fr	²¹⁵ Fr	²¹⁶ Fr	²¹⁷ Fr ۹	²¹⁸ Fr م	²¹⁹ Fr	²²⁰ Fr	²²¹ Fr °	²²² Fr ^{β-}	²²³ Fr β·
	²¹³ Rn	²¹⁴ Rn	²¹⁵ Rn	²¹⁶ Rn	²¹⁷ Rn ª	²¹⁸ Rn	²¹⁹ ,n	²²⁰ Rn	²²¹ Rn β-	²²² Rn
,	²¹² At	²¹³ At	²¹⁴ At	²¹⁵ At	²¹⁶ At	²¹⁷ At	²¹⁸ At	²¹⁹ At	²²⁰ At β-	²²¹ Αt β-
	²¹¹ Po	²¹² Po	²¹³ Po	²¹⁴ Po	215 F O	²¹⁶ Po	²¹⁷ Po	²¹⁸ Po	²¹⁹ Ρο β-	²²⁰ Ρο β-
	²¹⁰ Βi β.	²¹⁷ 3i ª	212 <mark>Ε</mark> β·	213 5 β-	²¹⁴ Βi β-	²¹⁵ Βi β-	²¹⁶ Ві _{β-}	²¹⁷ Ві _{β-}	²¹⁸ Βi β-	²¹⁹ Βi β-
	209, D β-	²¹⁰ Pb β-	²¹¹ Ρb	²¹² Рb	²¹³ Ρb β-	²¹⁴ Pb β-	²¹⁵ Ρb	²¹⁶ Ρb	²¹⁷ Ρb	²¹⁸ Ρb

Explain something about your science, making it as accessible as possible.

- Inspire, excite, clarify, be careful about difficult or words that are new to your audience.
- Try using only (or as closely as possible) the ten-hundred most common words in English: <u>https://splasho.com/upgoer5/</u>.
- Explain any extra words as needed.
- For example: <u>Saturn V rocket</u> (published in Nov 2012)
- Send us your ten-hundred words: <u>https://tinyurl.com/stfc-ten-hundred</u>

Make your own slide

- We want you to produce a slide (maximum of 2) on your own research
- Done individually or in pairs
- Write accompanying text (maximum 200 words)
- Email your slide and text to physics-bindingblocks@york.ac.uk
 - Don't forget to include your name(s)
- Please email it by the end of Wednesday this week (the 21st)