Instrumentation: Gamma-ray spectroscopy

Stefanos Paschalis

22nd STFC Nuclear Physics Summer School August 2024

Resources and acknowledgements

Sidong Chen, York PDRA, exercises

Slides from several colleagues: Augusto Macchiavelli, Marina Petri, Pankaj Josi....

GRETA and AGATA collaborations

Glenn F. Knoll. Radiation detection and measurement (John Wiley & Sons, 1979), 4th edition

W.R. Leo: Techniques for Nuclear and Particle Physics Experiments, Springer-Verlag, second revised edition edition, 1994

Zhong He, NIM A 463 (2001) 250–267, Review of the Shockley–Ramo theorem and its application in semiconductor gamma-ray detectors

UK landscape – STFC funded projects

*Apologies to those projects that I may have forgotten

Ionising radiation detectors

All types of detectors are based on the same fundamental principle: the transfer of part or all of the radiation energy to the detector mass where it is converted into some other form more accessible to human perception (W.R. Leo).

One is typically interested in extracting the:

Energy deposition (of ionising particle)						
Timing (of interaction)						
Position (of interaction within the detector)						
Type of particle (PID)						
Incident rate or dose						

The basic ingredients for detection

Interactions of ionizing radiation with matter

Detection technology

Electronic readout and signal processing

Data analysis

The basic ingredients for detection of this Lecture

Background and motivation

Interactions of ionizing radiation with matter γ rays

Detection technology

Semiconductors, HPGe arrays

Electronic readout and signal processing position sensitive

RESOLVING POWER or "finding a needle in the haystack" The elevator Speech

https://www.triz.co.uk/problem-solving---facilitation-workshops

Development of new detectors and techniques have always led to discoveries of new and unexpected phenomena.

Interactions of ionizing radiation with matter γ rays

Detection technology

Electronic readout and signal processing

Data analysis

Interaction of γ rays with matter

If gamma-ray energy is >> 2 $m_o c^2$ (electron rest mass 511 keV), a positron-electron can be formed in the strong Coulomb field of a nucleus. This pair carries the gamma-ray energy minus 2 $m_o c^2$.

Exercise 1: Anatomy of a high resolution gamma-ray spectrum

Analysing a high resolution gamma-ray spectrum

Improves peak-to-total ratio considerably!

Compton suppressed arrays: Excellent peak-to-total ratio <u>but</u> limited efficiency

Widely used quantities for high res. gamma-ray detectors

Peak to Compton = $\frac{Height \ of \ photopeak}{Aver. \ counts \ in \ Compt. \ plateau}$

 $P/T = Peak to Total = \frac{Counts in the peak area}{Total counts in the spectrum}$

Resolution (δE)

```
average spacing between gammas (SE<sub>\nu</sub>)
```

```
and resolving power (RP)
```

Efficiency (often relative to a 3"x3" Nal (cylinder))

Suppress background Full energy Background from photopeak Compton scattering 8000 unsuppressed Counts 6000 4000 suppressed 2000 800 1000 1200 200400 600

Energy (keV)

Array Capabilities and Future Arrays

D.C. Radford

Physics Opportunities with Large Ge Detector Arrays: Present and Future Asilomar, October 1993

2. $R = (SE_{\gamma}/\delta E_{\gamma}) PT$

 $R \propto$ average improvement in peak-to-background as a function of increased coincidence fold.

- SE_{γ} = average spacing between gammas in cascade (≈ 60 keV for (HI,xn) reactions)
- $\delta E_{\gamma} = \text{energy resolution (FWHM)}$ (typically 4 - 6 keV at $E_{\gamma} = 1 \text{ MeV}$)
- PT = photopeak-to-total ratio for the Compton-suppressed HPGe detectors

Evolution of gamma-ray detection technology

Evolution of gamma-ray detection technology

Evolution of gamma-ray detection technology

Gamma-ray tracking: Principle of operation

The idea is: Do not to reject but track instead!

Gamma-ray tracking: Principle of operation

The basic ingredients for detection of this Lecture

Interactions of ionizing radiation with matter

Detection technology

Semiconductors

Electronic readout and signal processing

Data analysis

Ge crystal

Fig. 5.14 Germanium ingot and Ge detector elements. Figure by courtesy of CANBERRA – an AREVA company

Semiconductor Detectors

1																	18
1 H																	VIIIA
Hydrogen	2											13	14	15	16	17	Helium
1.008	IIA	_										IIIA	IVA	VA	VIA	VIIA	4.002602
3 Li	4 B	e	DDD	TODIC		DOD			NUTCO			5 B	6 C	7 N	8 0	9 F	10 Ne
Lithium	Berylliun	1	PER	JODIC	TABI	E OF	THEF	LEME	NTS			Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon
6.94	9.012182	<u>:</u>										10.81	12.0107	14.007	15.999	18.998403163	20.1797
11 Na	12 M	5						0				13 AI	14 Si	15 P	16 S	17 CI	18 A
Sodium	Magnesium	n 3	4	5	6	7	8	9	10	11	12	Aluminum	Silicon	Phosphorus	Sulfur	Chlorine	Argon
22.98976928	24.305	IIIB	IVB	VB	VIB	VIIB			-	IB	IIB	26.9815385	28.085	30.973761998	32.06	35.45	39.948
19 K	20 0	21 50	22 1	23 V	24 Cr	25 Mn	20 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 K
Potassium	Calcium AO 079	Scandium	A7 967	FO 041E	Chromium	Manganese EA 020044	EE OAE	Cobalt	NICKEI	Copper 62 EA6	Zinc 6E 20	Gallium	72 620	Arisenic 74 021505	Selenium 79.071	Bromine	Rrypton 92 700
39.0905	40.070 38 C	44.900900	41.007	41 Nb	42 Mo	43 Tc	33.043 AA Du	36.933195	30.0934	47 Ag	48 Cd	40 10	12.030	51 Sh	52 Te	19.904 53 I	63.190
Bubidium	Strontium	Vttrium	Zirconium	Nichium	Molehd	45 IC	Buthenium	A5 INI	Palladium	Silver	40 Cu	49 m	JU JI	Antimony	JZ Tellurium	Jodine	Xenon
85.4678	87.62	88 90584	91.224	92.90637	05.05	(97 907212)	101.07	102 90550	106.42	107.8682	112 414	114.818	118 710	121.760	127.60	126 90447	131 203
55 Cs	56 B	57-71	72 H	73 Ta	74 W	75 Re	76 Os	77 lr	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rr
Caesium	Barium	lantha-	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
32.90545196	137.327	nides	178.49	180.94788	183.84	186.207	190.23	192.217	195.084	196.966569	200.592	204.38	207.2	208.98040	(208.98243)	(209.98715)	(222.01758
87 Fr	88 R	89-103	104 R	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113	114 FI	115	116 Lv	117	118
Francium	Radium	Actinides	Rutherford	. Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium	Darmstadt.	Roentgen.	Copernicium		Flerovium		Livermorium		
(223.01974)	(226.0254)	.)	(267.122)	(268.126)	(271.134)	(270.133)	(277.152)	(278.156)	(281.165)	(282.169)	(285.177)		(289.190)		(293.204)		
								_	-								
Lantha	nide	57 La S	58 Ce	59 Pr	60 Nd	61 Pm	62 Sn	n 63 E	64 (Gd 65	Tb 66	Dy 67	Ho 68	Er 69	Tm 70	Yb 71	Lu
	1	anthanum	Cerium	raseodym.	Neodymium	Promethium	Samariun	n Europiun	a Gadolina	um Terbiu	im Dyspro	sium Holn	ium Erb	ium Th	ulium Ytt	erbium Lut	tetium
	L	38.90547	140.116	140.90766	144.242	(144.91276)	150.36	151.964	157.2	5 158.92	535 162.	00 164.9	3033 167	259 168	.93422 17	3.054 174	8008
Acti	inide	80 Ac 0	0 Th	01 Pa	92 II	03 No	04 P	95 An	96 0	m 97	Rk QR	CF 99	Es 100	Em 101	Md 102	No 103	Lr.
8	eries	Actinium	Thorium I	rotactinium	Uranium	Neptunium	Plutoniur	n Americiur	n Curiur	n Berkeli	um Califor	nium Einste	inium Fern	ium Mene	selevium Nol	belium Law	rencium
	0	227.02775)	232.0377	231.03588	238.02891	(237.04817)	(244.06420	0) (243.06138	(247.070	35) (247.070	031) (251.07	959) (252.0	(257.0	9510) (258	.09843) (25	.1010) (26	2.110)
	4						1	7.5	711-					//	// \		

Crystal

Figure 2.2.5.: The diamond lattice of silicon and germanium

Figure 1. Covalent bonds of silicon

Each Si atom forms four covalent bonds with four neighbouring silicon atoms. These four neighbours are located at the corners of a regular tetrahedron surrounding the atom.

Crystal

Each Si atom forms four covalent bonds with four neighbouring silicon atoms. These four neighbours are located at the corners of a regular tetrahedron surrounding the atom.

Energy Band Structure

Fig. 5.2 Energy band structure of conductors, insulators and semiconductors. The vertical axis represents the electron energy, the horizontal axis the position in the lattice

	Si	Ge
Energy gap [eV]	~1.2	~0.75

SD detector characteristics

Average energy per electron-hole creation in Si & Ge

	Si	Ge
300 K	3.62 eV	-
77 K	3.81 eV	2.96 eV

In principle, using these numbers we can estimate the number of electron-hole pairs per incident gamma-ray (e.g. for 1 MeV energy deposition) which dictates also the statistical variation often dominates the resolution (but note the need for the **Fano Factor!**)

Exercise 2: Fano Factor

Fano factor is introduced as a factor to relate the observed variation (σ_{exp}^2) to that predicated by the Poisson distribution ($\sigma_{calc}^2 = n_o$)

Assume a detector measures a 60 keV gamma ray with a 1 keV FHWM resolution and a 662 keV gamma ray with a 2.3 keV resolution.

 \rightarrow Estimate the Fano Factor.

Charge carriers

- At T=0 K, all electrons in the valence band participate in covalent bonding between the lattice atoms.
- Si & Ge have four valence electrons, four covalent bonds are formed.
- At T > 0 K (normal temperatures) electrons thermally excite to the conduction band.
- The hole can be filled by neighboring valence electrons and so on.
- The electric current in a semiconductor arises from:
 - Movement of free electrons in conduction band
 - Movement of holes in valence band

Probability (Fermi-Dirac) that an energy level is occupied: $f(E) = \frac{1}{e^{\frac{E-E_F}{kT}} + 1}$

Drift and Mobility

The mobility of electrons and holes is defined as :

 $v_e = \mu_e E$ E – magnitude of Electrical Field applied $v_h = \mu_h E$ v – drift velocity

e.g. in Si@300K
$$\mu_e$$
=1350 cm² V⁻¹ s⁻¹
 μ_h = 480 cm² V⁻¹ s⁻¹
@77K μ_e = 21400 cm² V⁻¹ s⁻¹
 μ_h = 11000 cm² V⁻¹ s⁻¹

Compare with electron-ion mobilities in gas detectors
Drift and Mobility

Drift and Mobility

	Si	Ge
Atomic number	14	32
Atomic weight	28.09	72.60
Stable isotope mass numbers	28-29-30	70-72-73-74-76
Density (300 K); g/cm ³	2.33	5.32
Atoms/cm ³	$4.96 imes 10^{22}$	4.41×10^{22}
Dielectric constant (relative to vacuum)	12	16
Forbidden energy gap (300 K); eV	1.115	0.665
Forbidden energy gap (0 K); eV	1.165	0.746
Intrinsic carrier density (300 K); cm ⁻³	$1.5 imes10^{10}$	$2.4 imes 10^{13}$
Intrinsic resistivity (300 K); $\Omega \cdot cm$	2.3×10^{5}	47
Electron mobility (300 K); $cm^2/V \cdot s$	1350	3900
Hole mobility (300 K); $cm^2/V \cdot s$	480	1900
Electron mobility (77 K); $cm^2/V \cdot s$	2.1×10^{4}	$3.6 imes10^4$
Hole mobility (77 K); $cm^2/V \cdot s$	$1.1 imes 10^{4}$	$4.2 imes 10^{4}$
Energy per electron-hole pair (300 K); eV	3.62	
Energy per electron-hole pair (77 K); eV	3.76	2.96
Fano factor (77 K)	0.143 (Ref. 7)	0.129 (Ref. 9)
	0.084 (Ref. 8)	0.08 (Ref. 10)
	0.085	< 0.11 (Ref. 11)
	to (Ref. 12)	$\left. \begin{array}{c} 0.057\\ 0.064 \end{array} \right\}$ (Ref. 12
	0.16 (Ref. 13)	0.058 (Ref. 14)

Chapter 11 Semiconductor Properties 357

•Saturation velocity (velocity becomes independent of further increase in the electrical field)

In SD the time required to collect charge carriers over typical dimension of 0.1 cm or less is <10 ns, i.e. thin semiconductor detectors can be used for fast timing purposes

Source: G. Bertolini and A. Coche (eds.), Semiconductor Detectors, Elsevier-North Holland, Amsterdam, 1968, except where noted.

Doped Semiconductors

n-type Semiconductors

n-type Semiconductors: Energy Band Structure

p-type Semiconductors

p-type Semiconductors: Energy Band Structure

Semiconductor junctions

- The functioning of a SD is based on the formation of a SD "junction"
- Junctions can be formed in several ways
- pn junction (simple configuration)

pn junction

- pn junction is formed by between a p-type material with an n-type material (in practice from a single crystal)
- Because of the difference in the concentration of electrons and holes, there is an initial diffusion of holes towards the n-region and electrons towards the p-region
- Holes capture electrons on the n-side
- Electrons fill up holes on the p-side
- Charge build up on either side of the junction
 - p-region becomes negative
 - n-region becomes positive
- electric field across the junction which eventually halts the diffusion process → region of immobile space charge

See schematic plot of pn junction in the next slide

pn junction (no bias)

Depletion region of pn junctions and its electrical properties (no bias)

region over which the charge imbalance exist & extends into both the p & n side of the junction low concentration of electrons and holes in the **depletion region** the net charge is provided by the fixed ions (donors or acceptors) that have been left *uncovered* by majority carrier diffusion.

The electric field across the depletion region causes any electrons created in the region to be swept back towards the n-type material and any holes towards the p-type. Their motion constitutes a basic electric signal.

Depletion region of pn junctions and its electrical properties (no bias)

- When equilibrium is reached, the charge density is approximated by the displayed step function.
- Potential difference across the junction is called "contact potential" or "build in potential" and has values ~ 1V

This is already a detector but...

- very small active area (depletion region)
- Inefficient collection of electron and holes

not a good one!

Depletion region of pn junctions and its electrical properties (reverse bias)

<u>Solution</u>: Apply reversed-bias voltage (negative voltage to the p-region and positive to the n-region)

- holes will move towards the p-contact and away from the junction
- Electrons will move towards the n-contact and away from the junction

increased depletion region + faster and efficient charge collection

Planar HPGe detectors

Coaxial HPGe Detectors

Depletion volume in a Coaxial Ge crystal (AGATA type)

Remaining non-depleted volume

Increasing applied reverse bias

The basic ingredients for detection of this Lecture

Interactions of ionizing radiation with matter

Detection technology

Electronic readout and signal processing position sensitive

Data analysis

The Shockley-Ramo theorem

The Shockley–Ramo theorem states: The charge Q and current i on an electrode induced by a moving point charge q are given by:

$$Q = -q\varphi_0(\mathbf{x})$$

 $i = q \boldsymbol{v} \cdot \boldsymbol{E}_0(\boldsymbol{x})$

 φ_0 and E_0 are called the weighting potential and the weighting field, respectively.

where v is the instantaneous velocity of charge q. $\varphi_0(x)$ and $E_0(x)$ are the electric potential and field that would exist at q's instantaneous position xunder the following circumstances: the selected electrode at unit potential, all other electrodes at zero potential and all charges removed. Remember Drift and Mobility slide

Shockley-Ramo theorem

Prescription :

- Apply V (Volts) to the electrode in consideration and ground (0V) to all the other electrodes.
- 2. The induced charge due to travel of a charge q over distance is

 $Q(t) = \frac{q_0}{d} \left(\begin{array}{c} \text{electron drift} \\ \text{distance} \end{array} + \begin{array}{c} \text{hole drift} \\ \text{distance} \end{array} \right)$

3. Repeat this exercise with all

the electrodes.

Note:

Both electron and hole movement contributes to the signal!! The charge induced/generated does not depend on the high voltage applied on the detector !

Planar detector: position sensitivity from pulse shape

Time evolution of signal

Coaxial detector: position sensitivity from pulse shape

Coaxial detector with electrical segmentation: HPGe position sensitivity

Digital signal processing: to fully exploit the signal variety

A digitised signal pulse 100 MHz \rightarrow signal is sampled every 10 ns

CAEN desktop digitiser DT5730 - 8 Ch. 14 bit 500 MS/s

GRETINA Digitiser module (designed & produced LBNL) 14bit, 100 MHz, Pulse shape

Pulse Shape Analysis for position reconstruction of γ-ray interaction

Exercise 3: Pulse-shape analysis (using chi2 minimisation)

The text file contains:

- in the 2nd column the
 recorded waveforms in
 9 neighboring segments
 and the CC for a single
 measured event
- in columns 3rd 11th it has the same information for 9 precalculated basis points

Compare the traces and extract the x, y, z interaction position (from the corresponding basis points) that gives the best-fit to the recorded data

Prepared by Sidon Chen

A realistic position reconstruction

Collimated source of ¹³⁷Cs 662 keV Gamma ray beam σ_{x,y,z}~ 2 mm 120

Position resolution

Gamma-ray tracking: Principle of operation

A 3D position sensitive Ge detector

- Electrically segmented
- Pulse shape analysis of position sensitive signals

9 cm

φ

3

β

Tracking: clustering

First step in tracking is to find clusters of interaction points which likely belong to a single γ -ray scattering in the detector – based on opening angle into the Ge shell

Tracking: Compton scattering formula

Problem: 3!=6 possible sequences

Sequence with the minimum χ^2 \rightarrow correct scattering sequence \rightarrow rejects escaped (Compton) and wrong direction

Stefanos Paschalis |

Exercise 4: γ-ray tracking

A Geant4 simulation assumes a 2MeV gamma-rays emitted from 0.5c moving particles, and detected by 4Pai-AGATA array.

1,000,000 events are simulated.

The analysis is performed with OFT tracking and the Doppler correction is applied.

The branches in the tree are:

EntryID: event id in simulation
Energy: gamma energy without Doppler correction
EDopp: gamma energy with Doppler correction
FOM: in the OFT tracking, the FOM is calculated as the probability, so large FOM means tracking
ninter: number of interactions in one event

Broadening of detected gamma-ray energy due to:

- velocity change in target (unknown interaction depth), momentum spread
- $\Delta \theta$ due to opening angle detector and trajectory of nucleus

Doppler Broadening

Broadening of detected gamma-ray energy due to:

- velocity change in target (unknown interaction depth), momentum spread
 - E.g. thin target (or MINOS)
- $\Delta \theta$ due to opening angle detector and trajectory of nucleus
 - E.g. position resolution of gamma-ray detector and Spectrometer/detector

Doppler correction using position information

From F. Recchia, PSD8 conference

Doppler correction using position information

From F. Recchia, PSD8 conference

Doppler correction using position information

From F. Recchia, PSD8 conference

Advantages of Tracking

Particularly important for experiments with fast secondary beams delivered by the fragmentation facilities

Summary

