The EIC Charlotte Van Hulse University of Alcalá

Comunidad de Madrid

22nd STFC Nuclear Physics Summer School University of Durham 11–24 August 2024

On the menu

- EIC machine: overview
- ePIC: the first EIC detector
- Why an EIC?
 - Nucleon spin
 - Multi-dimensional nucleon structure
 - Saturation
 - Hadronisation

Ó

- Based on RHIC:
 - use existing hadron storage ring energy: 41–275 GeV
 - add electron storage ring in RHIC tunnel energy: 5–18 GeV

 $\rightarrow \sqrt{s} = 29 - 141 \text{ GeV}$

- Based on RHIC:
 - use existing hadron storage ring energy: 41–275 GeV
 - add electron storage ring in RHIC tunnel energy: 5–18 GeV

 $\rightarrow \sqrt{s} = 29 - 141 \text{ GeV}$

- $\vec{e} + \vec{p}^{\uparrow}$, \vec{d}^{\uparrow} , $\overrightarrow{He}^{\uparrow}$, unpolarised ions up to U
 - ~ 70% polarisation

- Based on RHIC:
 - use existing hadron storage ring energy: 41–275 GeV
 - add electron storage ring in RHIC tunnel energy: 5–18 GeV

 $\rightarrow \sqrt{s} = 29 - 141 \text{ GeV}$

• $\vec{e} + \vec{p}^{\uparrow}$, \vec{d}^{\uparrow} , $\overrightarrow{He}^{\uparrow}$, unpolarised ions up to U

~ 70% polarisation

•
$$\mathscr{L} = 10^{33-34} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$$

 $\leftrightarrow \mathscr{L}_{int} = 10 - 100 \text{ fb}^{-1}/\text{year}$

Luminosity and centre-of-mass energy: ep collisions

Luminosity for eA similar within factor 2–3

	Hig Ba Hig Ba
0.	44 (
	- - - C

- Based on RHIC:
 - use exiting hadron storage ring energy: 41–275 GeV
 - add electron storage ring in RHIC tunnel energy: 5–18 GeV

 $\rightarrow \sqrt{s} = 29 - 141 \text{ GeV}$ (per nucleon)

• ion beam: proton to Uranium

•
$$\vec{e} + \vec{p}^{\uparrow}, \vec{d}^{\uparrow}, \vec{He}^{\uparrow}$$

- ~ 70% polarisation
- $\mathscr{L} = 10^{33-34} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$

 $\leftrightarrow \mathscr{L}_{int} = 10 - 100 \text{ fb}^{-1}/\text{year}$

- Based on RHIC:
 - use exiting hadron storage ring energy: 41–275 GeV
 - add electron storage ring in RHIC tunnel energy: 5–18 GeV

 $\rightarrow \sqrt{s} = 29 - 141 \text{ GeV}$ (per nucleon)

• ion beam: proton to Uranium

•
$$\vec{e} + \vec{p}^{\uparrow}, \vec{d}^{\uparrow}, \vec{He}^{\uparrow}$$

- ~ 70% polarisation
- $\mathscr{L} = 10^{33-34} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$

 $\leftrightarrow \mathscr{L}_{int} = 10 - 100 \text{ fb}^{-1}/\text{year}$

The electron-proton/ion collider (ePIC) detector

The electron-proton/ion collider (ePIC) detector

+ far forward

The electron-proton/ion collider (ePIC) detector

+ far forward

• Backward EMCAL: high-precision PbWO₄ + Si sensors

- Backward EMCAL: high-precision PbWO₄ + Si sensors
- Barrel EMCAL: 3D imaging with MAPS and sampling Pb/ scintillating fibres with Si sensors

- Backward EMCAL: high-precision PbWO₄ + Si sensors
- Barrel EMCAL: 3D imaging with MAPS and sampling Pb/ scintillating fibres with Si sensors
- Forward EMCAL: finely segmented W powder/scintillating fibres

• Backward HCAL: steel/scintillator sandwich as tail catcher

• Backward HCAL:

steel/scintillator sandwich as tail catcher

• Barrel HCAL: Fe/scintillator sandwich: detection of neutrals

• Backward HCAL:

steel/scintillator sandwich as tail catcher

- Barrel HCAL: Fe/scintillator sandwich: detection of neutrals
- Forward HCAL: W/scintillator sandwich longitudinally segmented, high granularity: good E resolution

include TOF

include TOF

spherical mirrors

spherical mirrors

Far-backward region

Far-backward region

Far-backward region

Far-forward region

Far-forward region

Timeline

	FY19	FY20	FY21	FY22	FY23	FY24	FY25	FY26
	Q1 Q2 Q3	Q4 Q1 Q2 Q3	Q4 Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4 Q	1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4 Q1
CD		CD-0(A) Dec 2019	CD-1 (A) Jun 2021		CD Jan	-3A CD-3 2024 Oct 20	3B CD-2/3 024 Apr 2025	
Research & Development	Acce S De	elerator Systems I etector	Research & Research &	Development Development				end of RI
Design		Conce	ptual Design Infrastructure Accelerator Systems Detector					
Construction & Installation					Infrastructur Accelerato System Detector	e or os	Conv	Procurement, Procurement,
Commissioning & Pre-Ops								
Кеу	(A) Ac	ctual	Completed		Planned	Data Date	♦ Leve Mile	l 0 stones

Nucleon spin structure

Nucleon spin structure

Nucleon multi-dimensional structure

Nucleon spin structure

Nucleon multi-dimensional structure

Nucleon spin structure

Nucleon multi-dimensional structure

 $e^{-}(k)$

 $e^{-}(k)$

 $Q^2 = -q^2$

 $e^{-}(k)$

$$Q^2 = -q^2$$

Highly virtual photon: $Q^2 \gg 1 \ {
m GeV}^2$ provides hard scale of process

 $e^{-}(k)$

$$Q^2 = -q^2$$

Highly virtual photon: $Q^2 \gg 1 {
m GeV}^2$ provides hard scale of process

$$x_B = \frac{Q^2}{2P \cdot q}$$

 $\vec{e}(k)$

 $\overrightarrow{p}(P)$

$$Q^2 = -q^2$$

Highly virtual photon: $Q^2 \gg 1 {
m GeV}^2$ provides hard scale of process

$$x_B = \frac{Q^2}{2P \cdot q}$$

 $\vec{e}(k)$

$$Q^2 = -q^2$$

Highly virtual photon: $Q^2 \gg 1 {
m GeV}^2$ provides hard scale of process

$$x_B = \frac{Q^2}{2P \cdot q}$$

Kinematic coverage at the EIC

16

Nucleon spin structure

- longitudinally polarised proton
- longitudinally polarised e[±] beam
- count... 024

- Iongitudinally polarised proton
- longitudinally polarised e[±] beam \bullet
- count... 024586 ullet

flip proton spin and count... ullet

- Iongitudinally polarised proton
- longitudinally polarised e[±] beam ullet
- count... 024 ullet

flip proton spin and count... ●

- Iongitudinally polarised proton
- longitudinally polarised e[±] beam
- count... 024686 \bullet

$$\frac{\overleftarrow{\sigma}}{\overleftarrow{\sigma}} - \frac{\overrightarrow{\sigma}}{\overrightarrow{\sigma}} \propto g_1(x) = \frac{1}{2} \sum_q e_q^2 \Delta q(x) = \frac{1}{2} \sum_q e_q^2 \left(\overleftarrow{q}(x) - \overrightarrow{q}(x) \right)$$

helicity parton distribution function (PDF)

flip proton spin and count... \bullet

> parton fractional longitudinal momentum: x_B

10⁻² 10⁻¹ Helicity structure of the nucleon of a sex j_{k} and j_{k} an

results at 160 GeV (blue circles) and to the SMC results at 190 GeV (green crosses) for $Q^2 > 1$ (GeV/c)². The bands from top to bottom indicate the systematic uncertainties for SMC 190 GeV, COMPASS 200 GeV and COMPASS 160 GeV. (Coloured version online) Phys. Lett. B 753 (2016) 18

x=0.0036 (i = ๋♥) **x=0.0036** (i = 0)Ӿ ѕмс 🛣 ЕМС 0.7 x=0.0045 12 x=0.0045 ▲ E143 **E155** x=0.0055 12.1 x=0.0055 🖧 HERMES COMPASS 160 GeV x=0.007 x=0.007 CLAS W>2.5 GeV COMPASS 200 GeV g₁^p(x, Q²) + ⁻ 10 x=0.0000 x=0.009 COMPASS NLO fit $\int_{1}^{\infty} \nabla x = 0.0$ x=0.012 x=0.017 d D 8 x=0.024 x=0.035 x=0.049 (i = 10) x=0.077 x=0.12 ≤ x=0.17 x=0.22 - \$-\$-\$--᠆᠊᠋ᠿ᠊᠘ᢓ᠆ᠿ --\$<u>}</u>-∆ x=0.74 $10^{2}10$ 10 10^{2} $Q^2 (GeV^2/c^2)$ $Q^2 (GeV^2/c^2)$

Fig. 4. World data on the spin-dependent structure function g_1^p as a function of Q^2 for various values of x with all COMPASS data in red (full circles: 460 GeV, full

ence scale Q_0^2 as follows:

Here, $\Delta f_k(x)$ (k = S, 3, 8, g) represents $\Delta q^S(x)$, $\Delta q_3(x)$, $\Delta q_8(x)$ and $\Delta g(x) \land \eta_k$ is the first moment of $\Delta f_k(x)$ at the reference noments of Δq_3 and Δq_8 are fixed at any scale by the scale Quint (F + D) and (3F - D), respectively, assumbar $(3)_{f}$ flavour symmetries. The impact of releasing in nvestigated and included in the systematic quark Sints γ_k are fixed to zero for the two nonhey are poorly constrained and not needed spin ~ 30% **a**. The exponent $\beta_{\rm g}$, which is not well deterdata, is fixed to 3.0225 [28] and the uncertainty m fror oduced bias is included in the final uncertainty. This rameters in the fitted parton distributions. The leave of the fit consists of three terms, expression for

$$\frac{\mathcal{N}_{n}g_{1,i}^{data}}{\mathcal{N}_{n}\sigma_{i}}\right)^{2} + \left(\frac{1-\mathcal{N}_{n}}{\delta\mathcal{N}_{n}}\right)^{2} + \chi_{\text{positivity}}^{2}.$$
(11)

Only inties of the data are taken into account in σ_i . Tl factors \mathcal{N}_n of each data set *n* are allowed $\frac{dg_1(x, Q_{able}, \text{they are estimated as quadratic sums}}{d \ln Q^{2\text{the beam and target polarisations. The fit-found to be consistent with unity, except}}$ to va If the of the ted n for the E155 proton data where the **Gold Palisan** is higher, albeit compatible with the value quoted in Ref. [16].

In order to keep the parameters within their physical ranges, the polarised PDFs are calculated at every iteration of the fit and required to satisfy the positivity conditions $|\Delta q(x) + \Delta \bar{q}(x)| \leq$

10⁻² 10⁻¹ Helicity structure of the nucleon a sexisting $\alpha_k measurements_{(10)}$ a function of x. The COMPASS data at 200 GeV (red squares) are compared to the

results at 160 GeV (blue circles) and to the SMC results at 190 GeV (green crosses) for $Q^2 > 1$ (GeV/c)². The bands from top to bottom indicate the systematic uncertainties for SMC 190 GeV, COMPASS 200 GeV and COMPASS 160 GeV. (Coloured version online) Phys. Lett. B 753 (2016) 18

x=0.0036 (i = ๋♥) **x=0.0036** (i = 0)Ӿ ѕмс 🛣 ЕМС 0.7 x=0.0045 12 x=0.0045 ▲ E143 **E155** x=0.0055 12.1 x=0.0055 🖧 HERMES COMPASS 160 GeV x=0.007 x=0.007 CLAS W>2.5 GeV COMPASS 200 GeV g₁^p(x, Q²) + ⁻ 10 x=0.0000 x=0.009 COMPASS NLO fit $\int_{0.0}^{0.0} x = 0.0$ x=0.012 x=0.017 d D 8 x=0.024 x=0.035 x=0.049 (i = 10) x=0.077 x=0.12 ∠ x=0.17 x=0.22 ᠆᠊᠋ᠿ᠊᠘ᢓ᠆ᠿ ᠆᠆᠊᠋᠊᠋ᡷ᠋᠋᠘᠊᠅᠊᠋ᠿ᠆᠘ x=0.74 $10^{2}10$ 10 10^{2} $Q^2 (GeV^2/c^2)$

Fig. 4. World data on the spin-dependent structure function g_1^p as a function of Q^2 for various values of x with all COMPASS data in red (full circles: 460 GeV, full

ence scale Q_0^2 as follows:

Here, $\Delta f_k(x)$ (k = S, 3, 8, g) represents $\Delta q^S(x)$, $\Delta q_3(x)$, $\Delta q_8(x)$ and nd η_k is the first moment of $\Delta f_k(x)$ at the reference coments of Δq_3 and Δq_8 are fixed at any scale by the onstants (F + D) and (3F - D), respectively, assum- $(3)_{f}$ flavour symmetries. The impact of releasing ovestigated and included in the systematic quark sonts γ_k are fixed to zero for the two nonhey are poorly constrained and not needed spin ~ 30% **a**. The exponent $\beta_{\rm g}$, which is not well deterdata, is fixed to 3.0225 [28] and the uncertainty duced bias is included in the final uncertainty. This rameters in the fitted parton distributions. The leave of the fit consists of three terms, expression for

$$\frac{\mathcal{N}_{n}g_{1,i}^{data}}{\mathcal{N}_{n}\sigma_{i}}\right)^{2} + \left(\frac{1-\mathcal{N}_{n}}{\delta\mathcal{N}_{n}}\right)^{2} + \chi_{\text{positivity}}^{2}.$$
(11)

Only inties of the data are taken into account in σ_i . Tl factors \mathcal{N}_n of each data set *n* are allowed $\frac{dg_1(x, Q_{able}, \text{they are estimated as quadratic sums}}{d \ln Q^{2\text{the beam and target polarisations. The fit-found to be consistent with unity, except}$ to va If the of the ted n for the E155 proton data where the **Gold Palisan** is higher, albeit compatible with the value quoted in Ref. [16].

In order to keep the parameters within their physical ranges, the polarised PDFs are calculated at every iteration of the fit and required to satisfy the positivity conditions $|\Delta q(x) + \Delta \bar{q}(x)| \leq$

 $Q^2 (GeV^2/c^2)$

10⁻² 10⁻¹ Helicity structure of the nucleon' as existing a measurements (10) $\int_0^{\infty} x^{\alpha_k} (1-x)^{\beta_k} (1+\gamma_k x) dx$ a function of x. The COMPASS data at 200 GeV (red squares) are compared to the

Ӿ ѕмс

E155

COMPASS 160 GeV

COMPASS 200 GeV

(i = 10)

x=0.22

 10^{2}

 $Q^2 (GeV^2/c^2)$

x=0.74

results at 160 GeV (blue circles) and to the SMC results at 190 GeV (green crosses) for $Q^2 > 1$ (GeV/c)². The bands from top to bottom indicate the systematic uncertainties for SMC 190 GeV, COMPASS 200 GeV and COMPASS 160 GeV. (Coloured version online) Phys. Lett. B 753 (2016) 18

x=0.0036 (i = ๋♥) **x=0.0036** (i = 0)🛣 ЕМС 0.7 x=0.0045 12 x=0.0045 ▲ E143 x=0.0055 12.1 x=0.0055 🖧 HERMES x=0.007 x=0.007 CLAS W>2.5 GeV g₁^p(x, Q²) + ⁻ 10 x=0.0000 x=0.009 COMPASS NLO fit $\int_{0.0}^{0.0} x = 0.0$ x=0.012 x=0.017 d D 8 x=0.024 x=0.035 x=0.049 x=0.077 x=0.12 ∠ x=0.17 - \$-\$-\$-\$-\$-᠆᠊᠋᠊᠋ᠿ᠊ᡘᡛᢕ᠆᠕᠋ᡃᢑ᠆ᠿ ᠆᠆᠊᠋᠊᠋ᡷ᠋᠋᠘᠊᠂᠋᠋ᢕ᠊ ᠆᠆᠊᠋ᠿ᠘᠆ᡧ᠊᠋ᡛ᠆ᢕ᠂ᡦᡃᢩ᠊᠊ $10^{2}10$ 10 $Q^2 (GeV^2/c^2)$

Fig. 4. World data on the spin-dependent structure function g_1^p as a function of Q^2 for various values of x with all COMPASS data in red (full circles: 460 GeV, full

ence scale Q_0^2 as follows:

Here, $\Delta f_k(x)$ (k = S, 3, 8, g) represents $\Delta q^S(x)$, $\Delta q_3(x)$, $\Delta q_8(x)$ and nd η_k is the first moment of $\Delta f_k(x)$ at the reference coments of Δq_3 and Δq_8 are fixed at any scale by the onstants (F + D) and (3F - D), respectively, assum- $(3)_{f}$ flavour symmetries. The impact of releasing ovestigated and included in the systematic quark sonts γ_k are fixed to zero for the two nonhey are poorly constrained and not needed spin ~ 30% **a**. The exponent $\beta_{\rm g}$, which is not well deterdata, is fixed to 3.0225 [28] and the uncertainty duced bias is included in the final uncertainty. This rameters in the fitted parton distributions. The leave of the fit consists of three terms, expression for

$$\chi^{2} = \sum_{n=1}^{N_{exp}} \left[\frac{\sigma_{1}^{fit} - \mathcal{N}_{n} g_{1,i}^{data}}{\mathcal{N}_{n} \sigma_{i}} \right]^{2} + \left(\frac{1 - \mathcal{N}_{n}}{\delta \mathcal{N}_{n}} \right)^{2} + \chi^{2}_{\text{positivity}}.$$
(11)

Only inties of the data are taken into account in σ_i . Tl factors \mathcal{N}_n of each data set *n* are allowed $\frac{dg_1(x, Q_{able}, \text{they are estimated as quadratic sums}}{d \ln Q^{2\text{the beam and target polarisations. The fit-found to be consistent with unity, except}$ to va If the of the ted n for the E155 proton data where the **Gold Palisan** is higher, albeit compatible with the value quoted in Ref. [16].

In order to keep the parameters within their physical ranges, the polarised PDFs are calculated at every iteration of the fit and required to satisfy the positivity conditions $|\Delta q(x) + \Delta \bar{q}(x)| \leq$

Helicity structure of the nucleon: existing measurements

Helicity structure of the nucleon: existing measurements

gluon spin

Gluon helicity distribution at the EIC

75

-2

Gluon helicity distribution at the EIC

75

-2

scaling violation from $g_1(x,Q^2)$

$$Q^2 = -q^2$$
$$x_B = \frac{Q^2}{2P \cdot q}$$

Highly virtual photon: $Q^2 \gg 1 \text{ GeV}^2$ provides hard scale of process

$$Q^2 = -q^2$$
$$x_B = \frac{Q^2}{2P \cdot q}$$

Highly virtual photon: $Q^2 \gg 1 \text{ GeV}^2$ provides hard scale of process

Detect a hadron!

$$Q^2 = -q^2$$
$$x_B = \frac{Q^2}{2P \cdot q}$$

parton distribution function $PDF(x_B)$

Highly virtual photon: $Q^2 \gg 1 \text{ GeV}^2$ provides hard scale of process Detect a hadron!

$$Q^{2} = -q^{2}$$
$$x_{B} = \frac{Q^{2}}{2P \cdot q}$$
$$z \stackrel{\text{lab}}{=} \frac{E_{h}}{E_{\gamma *}}$$

parton distribution function $PDF(x_B)$

Highly virtual photon: $Q^2 \gg 1 \text{ GeV}^2$ provides hard scale of process

fragmentation function FF(z)

$$Q^{2} = -q^{2}$$
$$x_{B} = \frac{Q^{2}}{2P \cdot q}$$
$$z \stackrel{\text{lab}}{=} \frac{E_{h}}{E_{\gamma *}}$$

Highly virtual photon: $Q^2 \gg 1 {
m GeV}^2$ provides hard scale of process

parton distribution function $PDF(x_B, Q^2)$

$$Q^{2} = -q^{2}$$
$$x_{B} = \frac{Q^{2}}{2P \cdot q}$$
$$z \stackrel{\text{lab}}{=} \frac{E_{h}}{E_{\gamma *}}$$

Highly virtual photon: $Q^2 \gg 1 {
m GeV}^2$ provides hard scale of process

parton distribution function $PDF(x_B, Q^2)$

Sea-quark helicity distributions

Sea-quark helicity distributions

 $A_{\parallel}^{h}(x)$

$$B, Q^{2}, z) = \frac{1}{P_{e}P_{p}} \frac{\stackrel{\longrightarrow}{I}}{\stackrel{\longrightarrow}{I}} - \stackrel{\stackrel{\longrightarrow}{K^{h}}}{\stackrel{\longrightarrow}{I}} (x_{B}, Q^{2}, z)$$
$$= D(y) A_{1}^{h}(x_{B}, Q^{2}, z)$$

Sea-quark helicity distributions

 $A_{\parallel}^{h}(x)$

Semi-inclusive measurements → access to sea-quark spin

$$B, Q^{2}, z) = \frac{1}{P_{e}P_{p}} \frac{\stackrel{\longrightarrow}{I}}{\stackrel{\longrightarrow}{I}} - \stackrel{\stackrel{\longrightarrow}{V}}{\stackrel{\longrightarrow}{I}}}{\stackrel{\longrightarrow}{I}} (x_{B}, Q^{2}, z)$$
$$= D(y) A^{h}_{1}(x_{B}, Q^{2}, z)$$
$$\propto \sum_{q} e^{2}_{q} \left[\Delta q \otimes w_{1} D^{q \rightarrow h}_{1} \right]$$

Sea-quark helicity distributior

-

 $\log(x_B)$

Sea-quark helicity distributior

-

Sea-qu

CVH et al., NIM A 1056 (2023) 168563

Why an EIC?

Wigner distributions $W(x, \vec{k}_T, \vec{b}_\perp)$

- 3.0 2.52.0 $\cdot 1.0$
- 0.5

3.0 2.52.0-1.5 $\cdot 1.0$ 0.5

- 3.0 -2.52.0 -1.5 $\cdot 1.0$ 0.5

$$Q^2 = -q^2$$
$$x_B = \frac{Q^2}{2P \cdot q}$$

$$Q^2 = -q^2$$
$$x_B = \frac{Q^2}{2P \cdot q}$$

parton distribution function $PDF(x_B)$

$$Q^{2} = -q^{2}$$
$$x_{B} = \frac{Q^{2}}{2P \cdot q}$$
$$z \stackrel{\text{lab}}{=} \frac{E_{h}}{E_{\gamma *}}$$

fragmentation function FF(z)

parton distribution function $PDF(x_B)$

$$Q^{2} = -q^{2}$$
$$x_{B} = \frac{Q^{2}}{2P \cdot q}$$
$$z \stackrel{\text{lab}}{=} \frac{E_{h}}{E_{\gamma *}}$$

Transverse-momentum-dependent (TMD) parton distribution function $PDF(x_B, k_{\perp})$

Transverse-momentum-dependent (TMD) fragmentation function $FF(z, p_{\perp})$

$$Q^{2} = -q^{2}$$
$$x_{B} = \frac{Q^{2}}{2P \cdot q}$$
$$z \stackrel{\text{lab}}{=} \frac{E_{h}}{E_{\gamma *}}$$

Transverse-momentum-dependent (TMD) parton distribution function $PDF(x_B, k_{\perp}, Q^2)$

$$Q^{2} = -q^{2}$$
$$x_{B} = \frac{Q^{2}}{2P \cdot q}$$
$$z \stackrel{\text{lab}}{=} \frac{E_{h}}{E_{\gamma *}}$$

Transverse-momentum-dependent (TMD) parton distribution function $PDF(x_B, k_{\perp}, Q^2)$

$$Q^{2} = -q^{2}$$
$$x_{B} = \frac{Q^{2}}{2P \cdot q}$$
$$z \stackrel{\text{lab}}{=} \frac{E_{h}}{E_{\gamma *}}$$

Transverse-momentum-dependent (TMD) parton distribution function $PDF(x_B, k_{\perp}, Q^2)$

$$Q^{2} = -q^{2}$$
$$x_{B} = \frac{Q^{2}}{2P \cdot q}$$
$$z \stackrel{\text{lab}}{=} \frac{E_{h}}{E_{\gamma *}}$$

Transverse-momentum-dependent (TMD) parton distribution function $PDF(x_B, k_{\perp}, Q^2)$

$$Q^{2} = -q^{2}$$
$$x_{B} = \frac{Q^{2}}{2P \cdot q}$$
$$z \stackrel{\text{lab}}{=} \frac{E_{h}}{E_{\gamma *}}$$

Transverse-momentum-dependent (TMD) parton distribution function $PDF(x_B, k_{\perp}, Q^2)$

Transverse momentum dependent parton distribution functions

nucleon polarisation

survive integration over parton transverse momentum

quark polarisation

U	L	Т
1		
	g_{1L}	
		h_{1T}

Transverse momentum dependent parton distribution functions

nucleon polarisation

quark polarisation

U	L	Т
1		h_1^{\perp}
	g_{1L}	h_{1L}^{\perp}
\perp L T	g_{1T}^{\perp}	$h_{1T}h_{1T}^{\perp}$

Transverse momentum dependent parton distri $f^a(x, k_T^2; Q^2)$ ctions

spin-spin

correlations

spin-momentum correlations

Semi-inclusive DIS cross section

$$\begin{aligned} \sigma^{h}(\phi,\phi_{S}) &= \sigma_{UU}^{h} \left\{ 1 + 2\langle\cos(\phi)\rangle_{UU}^{h} \cos(\phi) + 2\langle\cos(2\phi)\rangle_{UU}^{h} \cos(2\phi) \\ &+ \lambda_{l} 2\langle\sin(\phi)\rangle_{LU}^{h} \sin(\phi) \\ &+ S_{L} \left[2\langle\sin(\phi)\rangle_{UL}^{h} \sin(\phi) + 2\langle\sin(2\phi)\rangle_{UL}^{h} \sin(2\phi) \\ &+ \lambda_{l} \left(2\langle\cos(0\phi)\rangle_{LL}^{h} \cos(0\phi) + 2\langle\cos(\phi)\rangle_{LL}^{h} \cos(\phi) \right) \right] \\ &+ S_{T} \left[2\langle\sin(\phi - \phi_{S})\rangle_{UT}^{h} \sin(\phi - \phi_{S}) + 2\langle\sin(\phi + \phi_{S})\rangle_{UT}^{h} \sin(\phi + \phi_{S}) \\ &+ 2\langle\sin(3\phi - \phi_{S})\rangle_{UT}^{h} \sin(3\phi - \phi_{S}) + 2\langle\sin(\phi_{S})\rangle_{UT}^{h} \sin(\phi_{S}) \\ &+ 2\langle\sin(2\phi - \phi_{S})\rangle_{UT}^{h} \sin(2\phi - \phi_{S}) \\ &+ \lambda_{l} \left(2\langle\cos(\phi - \phi_{S})\rangle_{LT}^{h} \cos(\phi - \phi_{S}) \\ &+ 2\langle\cos(\phi_{S})\rangle_{LT}^{h} \cos(\phi - \phi_{S}) \right. \end{aligned}$$

Semi-inclusive DIS cross section

$$)\rangle_{UU}^{h} \cos(\phi) + 2\langle \cos(2\phi) \rangle_{UU}^{h} \cos(2\phi) \rangle_{UU}^{h} \cos(2\phi)$$

$$\sin(\phi) + 2\langle \sin(2\phi) \rangle_{UL}^{h} \sin(2\phi)$$
$$\cos(0\phi) + 2\langle \cos(\phi) \rangle_{LL}^{h} \cos(\phi) \rangle \Big]$$

$$|\rangle_{UT}^{h} \sin(\phi - \phi_S) + 2\langle \sin(\phi + \phi_S) \rangle_{UT}^{h} \sin(\phi + \phi_S) \rangle_{UT}$$

$$T \sin(3\phi - \phi_S) + 2\langle \sin(\phi_S) \rangle_{UT}^h \sin(\phi_S) \rangle_{UT}$$

$$T \sin(2\phi - \phi_S)$$

$$+ 2\langle \cos(\phi_S) \rangle_{LT}^h \cos(\phi_S) + 2\langle \cos(2\phi - \phi_S) \rangle_{LT}^h \cos(2\phi - \phi_S) \rangle \Big] \Big\}$$

target polarisation

 $2\langle \sin(\phi + \phi_S) \rangle_{UT}^h = \epsilon F_{UT}^{\sin(\phi + \phi_S)}$

Azimuthal amplitudes related to structure functions F_{XY} :

Azimuthal amplitudes related to structure functions F_{XY} :

Azimuthal amplitudes related to structure functions F_{XY} :

quark polarisation

auol		U	L	т
	U	f_1		h_1^\perp
	L		g_{1L}	h_{1L}^{\perp}
CIEC	т	f_{1T}^{\perp}	g_{1T}^{\perp}	$h_{1T}h_{1T}^{\perp}$

Azimuthal amplitudes related to structure functions F_{XY} :

quark polarisation

מווטו		U	L	Т
	U	f_1		h_1^\perp
2	L		g_{1L}	h_{1L}^{\perp}
000	т	f_{1T}^{\perp}	g_{1T}^{\perp}	$h_{1T}h_{1T}^{\perp}$
		1		1

polarisation hadron

Azimuthal amplitudes related to structure functions F_{XY} :

quark polarisation

_				
auoi		U	L	т
	U	f_1		h_1^\perp
	L		g_{1L}	h_{1L}^{\perp}
כופס	т	f_{1T}^{\perp}	g_{1T}^{\perp}	$h_{1T}h_{1T}^{\perp}$
		1		

Ē

polarisation hadron

Azimuthal amplitudes related to structure functions F_{XY} :

_				
auol		U	L	Т
	U	f_1		h_1^\perp
	L		g_{1L}	h_{1L}^{\perp}
CIEC	т	f_{1T}^{\perp}	g_{1T}^{\perp}	$h_{1T} h_{1T}^{\perp}$

polarisation 5 had

Azimuthal amplitudes related to structure functions F_{XY} :

Validity of TMD description

Consistent results for TMD and CT3 in overlap region

Spin-independent TMD PDFs at EIC

Fit: A. Bacchetta et al., JHEP 06 (2017) 081, JHEP 06 (2019) 051 (erratum)

EIC uncertainties dominated by assumed 3% point-to-point uncorrelated uncertainty 3% scale uncertainty

Theory uncertainties dominated by TMD evolution.

Spin-independent TMD PDFs at EIC

Fit: A. Bacchetta et al., JHEP 06 (2017) 081, JHEP 06 (2019) 051 (erratum)

EIC uncertainties dominated by assumed 3% point-to-point uncorrelated uncertainty 3% scale uncertainty

Theory uncertainties dominated by TMD evolution.

 $A_{UT} = \frac{1}{\langle |S_T| \rangle} \frac{N^{\uparrow}(\phi, \phi_S) - N^{\downarrow}(\phi, \phi_S)}{N^{\uparrow}(\phi, \phi_S) + N^{\downarrow}(\phi, \phi_S)}$

 $A_{UT} = \frac{1}{\langle |S_T| \rangle} \frac{N^{\uparrow}(\phi, \phi_S) - N^{\downarrow}(\phi, \phi_S)}{N^{\uparrow}(\phi, \phi_S) + N^{\downarrow}(\phi, \phi_S)}$

 $\sim \sin(\phi - \phi_S) \sum e_q^2 \mathscr{C} \left[f_{1T}^{\perp,q}(x,k_{\perp}) \times D_1^q(z,p_{\perp}) \right]$ \boldsymbol{Q}

$$A_{UT} = \frac{1}{\langle |S_T| \rangle} \frac{N^{\uparrow}(\phi, \phi_S) - N}{N^{\uparrow}(\phi, \phi_S) + N}$$

 $\sim \sin(\phi - \phi_S) \sum e_q^2 \mathscr{C} \left[f_{1T}^{\perp,q}(x,k_{\perp}) \times D_1^q(z,p_{\perp}) \right]$ \boldsymbol{Q}

 $f_{1T}^{\perp,q}(x,k_{\perp})$: Sivers function (0,-0)

34

$$A_{UT} = \frac{1}{\langle |S_T| \rangle} \frac{N^{\uparrow}(\phi, \phi_S) - N^{\downarrow}(\phi, \phi_S)}{N^{\uparrow}(\phi, \phi_S) + N^{\downarrow}(\phi, \phi_S)}$$

$$\sim \sin(\phi - \phi_S) \sum_{q} e_q^2 \mathscr{C} \left[f_{1T}^{\perp,q}(x, q) \right]$$

 $f_{1T}^{\perp,q}(x,k_{\perp})$: Sivers function (0,-0)

 $D_1^q(z, p_\perp)$: spin-independent fragmentation function

$$A_{UT} = \frac{1}{\langle |S_T| \rangle} \frac{N^{\uparrow}(\phi, \phi_S) - N^{\downarrow}(\phi, \phi_S)}{N^{\uparrow}(\phi, \phi_S) + N^{\downarrow}(\phi, \phi_S)}$$

$$\sim \sin(\phi - \phi_S) \sum_{q} e_q^2 \mathcal{C} \left[f_{1T}^{\perp,q}(x, q) \right]$$

 $f_{1T}^{\perp,q}(x,k_{\perp})$: Sivers function (0,-0)

 $D_1^q(z, p_\perp)$: spin-independent fragmentation function

- Sivers function:
- requires non-zero orbital angular momentum
- final-state interactions azimuthal asymmetries

- Sivers function:
- requires non-zero orbital angular momentum
- final-state interactions azimuthal asymmetries

- Sivers function:
- requires non-zero orbital angular momentum
- final-state interactions azimuthal asymmetries

- Sivers function:
- requires non-zero orbital angular momentum
- final-state interactions azimuthal asymmetries

- Sivers function:
- requires non-zero orbital angular momentum
- final-state interactions azimuthal asymmetries

- π^+ :
 - positive -> non-zero orbital angular momentum
- *π*⁻:
- consistent with zero $\rightarrow u$ and d quark cancelation

Sivers function

M. Anselmino et al., JHEP 04 (2017) 046

36

Sivers amplitude and Q²

Decrease of asymmetry with increasing $Q^2 \rightarrow$ need high precision (<1%) to measure asymmetry at high Q^2

Impact of EIC on Sivers TMD PDFs

R. Seidl, A. Vladimirov et al., NIM A **1055** (2023) 168458

Impact of EIC on Sivers TMD PDFs

R. Seidl, A. Vladimirov et al., NIM A **1055** (2023) 168458

Gluon TMDs

GLUONS	unpolarized	circular	linear
U	$\left(\begin{array}{c} f_1^g \\ 1 \end{array} \right)$		$h_1^{\perp g}$
L		$\langle g_{1L}^g \rangle$	$h_{_{1L}}^{\perp g}$
Τ	$f_{1T}^{\perp g}$	$g^g_{_{1T}}$	$h_{1T}^{g}, h_{1T}^{\perp g}$

- In contrast to quark TMDs, gluon TMDs are almost unknown
- Accessible through production of dijets, high-P_T hadron pairs, quarkonia

The various dimensions of the nucleon structure

The various dimensions of the nucleon structure

What are generalised parton distributions (GPDs)?

GPDs are probability <u>amplitudes</u>

- x=average longitudinal momentum fraction
- 2ξ=longitudinal momentum transfer
- t=squared momentum transfer to hadron
- experimental access to t and $\boldsymbol{\xi}$
- in general: no experimental access to x

What are generalised parton distributions (GPDs)?

GPDs are probability <u>amplitudes</u>

• for spin-1/2 hadron:

Four parton helicity-conserving twist-2 GPDs

$H(x,\xi,t)$	$E(x, \xi, t)$	parton-spin indeper
$ ilde{H}(x,\xi,t)$	$ ilde{E}(x,\xi,t)$	parton-spin depend
proton helicity non flip	proton helicity flip	

- x=average longitudinal momentum fraction
- 2ξ=longitudinal momentum transfer
- t=squared momentum transfer to hadron
- experimental access to t and $\boldsymbol{\xi}$
- in general: no experimental access to x

Four parton helicity-flip twist-2 GPDs

$H_T(x,\xi,t)$	$E_T(x,\xi,t)$
$ ilde{H}_T(x,\xi,t)$	$ ilde{E}_T(x,\xi,t)$

What GPDs tell us about the nucleon

• 3D parton distributions

M. Burkardt, PRD 92 ('00) 071503 Int. J. Mod Phys. A **18** ('03) 173

impact-parameter dependent distributions: probability to find parton (x,b_T)

GPDs

Fourier transform for $\xi=0$

GPD H

GPDs H+E

What GPDs tell us about the nucleon

• 3D parton distributions

M. Burkardt, PRD 92 ('00) 071503 Int. J. Mod Phys. A **18** ('03) 173

impact-parameter dependent distributions: probability to find parton (x,b_T)

GPDs

pressure distributions

gravitational form factors

Fourier transform

pressure distributions

Fourier transform for $\xi=0$

GPD H

GPDs H+E

What GPDs tell us about the nucleon

• 3D parton distributions

M. Burkardt, PRD 92 ('00) 071503 Int. J. Mod Phys. A **18** ('03) 173

impact-parameter dependent distributions: probability to find parton (x,b_T)

GPDs

pressure distributions

Fourier transform for $\xi=0$

GPD H

GPDs H+E

... and its spin

longitudinally polarised nucleon

Experimental access to GPDs

Deeply virtual Compton scattering (DVCS) Hard scale=large Q^2 =- q^2

Hard scale=large Q^2 =- q^2

Deeply virtual Compton scattering (DVCS) Hard scale=large Q²=-q²

CLAS – PRC 80 ('09) 035206; PRL 87 ('01) 182002; 100 ('08) 162002

COMPASS – arXiv:1702.06315

JLab Hall A Collaboration – PRL 99 ('07) 242501; PRC 92 ('15) 055202; Nat. Com. 8 ('17) 1408

HERMES – JHEP 10 ('12) 042; PLB 704 ('11) 15; NPB 842 ('11) 265

H1 – PLB 681 ('09) 391; 659 ('07) 796; EPJ C 44 ('05) 1

Deeply virtual Compton scattering (DVCS) Hard scale=large $Q^2 = -q^2$

CLAS – PRC 80 ('09) 035206; PRL 87 ('01) 182002; 100 ('08) 162002

COMPASS – arXiv:1702.06315

JLab Hall A Collaboration – PRL 99 ('07) 242501; PRC 92 ('15) 055202; Nat. Com. 8 ('17) 1408

HERMES – JHEP 10 ('12) 042; PLB 704 ('11) 15; NPB 842 ('11) 265

H1 – PLB 681 ('09) 391; 659 ('07) 796; EPJ C 44 ('05) 1

Deeply virtual Compton scattering (DVCS) Hard scale=large $Q^2 = -q^2$

CLAS – PRC 80 ('09) 035206; PRL 87 ('01) 182002; 100 ('08) 162002

COMPASS – arXiv:1702.06315

JLab Hall A Collaboration – PRL 99 ('07) 242501; PRC 92 ('15) 055202; Nat. Com. 8 ('17) 1408

HERMES – JHEP 10 ('12) 042; PLB 704 ('11) 15; NPB 842 ('11) 265

H1 – PLB 681 ('09) 391; 659 ('07) 796; EPJ C 44 ('05) 1

ZEUS – PLB 573 (2003) 46; JHEP 05 ('09) 108

Hard exclusive meson production Hard scale=large Q²

CLAS – PRC 95 ('17) 035207; 95 (2017) 035202 COMPASS – PLB 731 ('14) 19; NPB 915 ('17) 454 JLab Hall A Collaboration – PRC 83 ('11) 025201 HERMES – EPJ C 74 ('14) 3110; 75 ('15) 600; 77 ('17) 378

Deeply virtual Compton scattering (DVCS) Hard scale=large $Q^2 = -q^2$

CLAS – PRC 80 ('09) 035206; PRL 87 ('01) 182002; 100 ('08) 162002

COMPASS – arXiv:1702.06315

JLab Hall A Collaboration – PRL 99 ('07) 242501; PRC 92 ('15) 055202; Nat. Com. 8 ('17) 1408

HERMES – JHEP 10 ('12) 042; PLB 704 ('11) 15; NPB 842 ('11) 265

H1 – PLB 681 ('09) 391; 659 ('07) 796; EPJ C 44 ('05) 1

Deeply virtual Compton scattering (DVCS) Hard scale=large Q^2 =- q^2

CLAS – PRC 80 ('09) 035206; PRL 87 ('01) 182002; 100 ('08) 162002

COMPASS – arXiv:1702.06315

JLab Hall A Collaboration – PRL 99 ('07) 242501; PRC 92 ('15) 055202; Nat. Com. 8 ('17) 1408

HERMES – JHEP 10 ('12) 042; PLB 704 ('11) 15; NPB 842 ('11) 265

H1 – PLB 681 ('09) 391; 659 ('07) 796; EPJ C 44 ('05) 1

Deeply virtual Compton scattering (DVCS) Hard scale=large Q^2 =- q^2

CLAS – PRC 80 ('09) 035206; PRL 87 ('01) 182002; 100 ('08) 162002

COMPASS – arXiv:1702.06315

JLab Hall A Collaboration – PRL 99 ('07) 242501; PRC 92 ('15) 055202; Nat. Com. 8 ('17) 1408

HERMES – JHEP 10 ('12) 042; PLB 704 ('11) 15; NPB 842 ('11) 265

H1 – PLB 681 ('09) 391; 659 ('07) 796; EPJ C 44 ('05) 1

Exclusive measurements on p with the EIC

Deeply virtual Compton scattering

 b_{\perp}

Exclusive measurements on p with the EIC

Why an EIC?

Spin-independent parton distributions

Spin-independent parton distributions

Gluon splitting and recombination

ln(1/x)

 $x \approx Q^2 / W^2$

Gluon splitting and recombination

saturation

ln(1/x)

 $x \approx Q^2 / W^2$

The Oomph factor

The Oomph factor

Oomph factor: A^{1/3} enhancement of saturation effect

What object are we probing?

What object are we probing?

What object are we probing?

Coherent interaction: interaction with target as a whole. ~ target remains in same quantum state.

What object are we probing?

Coherent interaction: interaction with target as a whole. ~ target remains in same quantum state.

Incoherent interaction: interaction with constituents inside target.

target does not remain in same quantum state.
Ex.: target dissociation, excitation

What object are we probing?

Coherent interaction: interaction with target as a whole. ~ target remains in same quantum state.

Incoherent interaction: interaction with constituents inside target.

target does not remain in same quantum state.
Ex.: target dissociation, excitation

Diffractive measurements at the EIC

Exclusive measurements on nuclear targets with the EIC

Di-hadron production and jets in eA

 Complementarity region covered by dihadron and jet production

Why an EIC?

Hadronisation TOP q meson APPA -0 0000 CO CO Parton neson

Probing space-time evolution of hadronisation

- Energy loss of parton by medium-induced gluon radiation
- Energy loss of (pre-)hadrons
- absorption
- rescattering (small)
- Partonic and hadronic processes: different signature
 - probe space-time evolution of hadron formation
- PDFs modified by nuclear medium

Multiplicity ratios

Multiplicity ratios:

$$R_A^h = \frac{\left(\frac{N^h}{N_{DIS}}\right)_A}{\left(\frac{N^h}{N_{DIS}}\right)_D}$$

Ratios \rightarrow approximate cancelation of

- QED radiative effects
- limited detector acceptance and resolution

HERMES, Eur. Phys. J. A 47 (2011) 113

At highest z: hadronic absorption

Summary

EIC with ePIC can address various aspects of the nucleon and nuclear structure through:

- Measurements for 3D (spin-dependent) tomography in momentum space provided by good Cherenkov-based and TOF AC-LGAD hadron PID detectors and tracking.
- Exclusive measurements on protons, using the far-forward detector system.
- Diffractive and exclusive measurements with coherent/incoherent separation via very precise EM calorimeters and far-forward detector system.
- of hadron formation.

• Precise inclusive and semi-inclusive (spin-dependent) DIS measurements via high-resolution EM calorimeters.

• Measurements on a large variety of nuclei: probe gluon saturation and study the space-time evolution