Exercise 3: Pulse-shape analysis (using chi2 minimisation)

The text file contains:

- in the 2nd column the
 recorded waveforms in
 9 neighboring segments
 and the CC for a single
 measured event
- in columns 3rd 11th it has the same information for 9 precalculated basis points

Compare the traces and extract the x, y, z interaction position (from the corresponding basis points) that gives the best-fit to the recorded data

Prepared by Sidon Chen

A realistic position reconstruction

Collimated source of ¹³⁷Cs 662 keV Gamma ray beam σ_{x,y,z}~ 2 mm 120

Position resolution

Stefanos Paschalis |

Gamma-ray tracking: Principle of operation

A 3D position sensitive Ge detector

- Electrically segmented
- Pulse shape analysis of position sensitive signals

9 cm

φ

3

β

Tracking: clustering

First step in tracking is to find clusters of interaction points which likely belong to a single γ -ray scattering in the detector – based on opening angle into the Ge shell

Any two points with $\Delta \theta < \theta_p$ are grouped into the same cluster. The process is repeated for every new point that joins the cluster

Stefanos Paschalis |

The tracking Figure of Merit (FOM) "cut" and the "tradeoff"

The curves are provided for a range of FOM cuts from 0 to 0.2, 0.4, 0.6, ... 1.8, 2.0. The lower curve includes single interactions (wsi) and the upper one is obtained without these interactions (nsi).

Example of tracked and non tracked ¹⁵⁸Er source spectrum

Experimental data

Exercise 4: γ-ray tracking

A Geant4 simulation assumes a 2MeV gamma-rays emitted from 0.5c moving particles, and detected by 4Pai-AGATA array.

1,000,000 events are simulated.

The analysis is performed with OFT tracking and the Doppler correction is applied.

The branches in the tree are:

EntryID: event id in simulation
Energy: gamma energy without Doppler correction
EDopp: gamma energy with Doppler correction (use this one)
FOM: in the OFT tracking, the FOM is calculated as the probability, so large FOM means good tracking (opposite definition than in the slide above but same principle)
ninter: number of interactions in one event

 \rightarrow Task: Use the ROOT file to estimate the efficiency vs P/T for different FOM cuts.

Broadening of detected gamma-ray energy due to:

- velocity change in target (unknown interaction depth), momentum spread
- $\Delta \theta$ due to opening angle detector and trajectory of nucleus

Doppler Shift

Doppler Broadening

Broadening of detected gamma-ray energy due to:

- velocity change in target (unknown interaction depth), momentum spread
 - E.g. thin target (or MINOS)
- $\Delta \theta$ due to opening angle detector and trajectory of nucleus
 - E.g. position resolution of gamma-ray detector and Spectrometer/detector

• **11007**—Weisshaar, D. et al. Commissioning of GRETINA + S800 at NSCL

Energy [keV] (laboratory frame)

Doppler correction using position information

From F. Recchia, PSD8 conference

Doppler correction using position information

From F. Recchia, PSD8 conference

Doppler correction using position information

From F. Recchia, PSD8 conference

Properties of Gamma Decay

- Energies --> spacing between nuclear levels
- Lifetimes --> information about transition probabilities, links to nuclear matrix elements (structure!)
 - Intensities --> experiment dependent generally relates to transition probabilities (branching ratios)

$$J_{1}^{\pi} \xrightarrow{BR_{1}} \xrightarrow{BR_{2}} E_{1}$$

$$E_{\gamma 1} \xrightarrow{E_{\gamma 2}} E_{2}$$

$$J_{2}^{\pi} \xrightarrow{E_{2}} E_{2}$$

Lifetimes and Gamma Decay

The bulk of electromagnetic (gamma) transitions have lifetimes of $10^{-15} - 10^{-9}$ s Below a fraction of a nanosecond no clocks available for direct measurements What do we do??

Lifetimes information in the line-shape of peaks

Due to applying a "wrong" Doppler correction by assuming the "wrong" angle that the decays were emitted from the target position

Other more common life-time measurement methods also benefit from position sensitive detectors and tracking arrays: DSAM – Doppler shift attenuation method Plunger method

Advantages of Tracking

Particularly important for experiments with fast secondary beams delivered by the fragmentation facilities

Summary

The self-calibration method (if time allows...)