

QCD at high energy density, heavy-ion physics, and the ALICE experiment

Lecture 2/2

Jaime Norman (University of Liverpool) **Durham STFC Nuclear Physics Summer School** 23/08/2024

Overview

- ALICE (A Large Ion Collider Experiment) is the experiment at the LHC dedicated to studying the deconfined state of QCD known as the Quark-Gluon Plasma (QGP)
- In these lectures I want to give an overview of heavy-ion physics
 - Basic concepts of QCD, the QGP and heavy-ion physics (including collider physics)
 - The ALICE experiment
 - How do we probe the QGP? What have we discovered?
 - Future plans of heavy-ion physics at the LHC

Today!

Anatomy of a heavy ion collision

Many ways to quantitatively characterise the QGP

Characterisation of the QGP created in heavy-ion collisions

Microscopic structure of QGP

• Lifetime, size

range correlations)

- Strangeness enhancement
- Hadronisation mechanisms \bullet (Baryon/meson ratios)

Small systems

- QCD measurements
- Limit of QGP formation (QGP-like effects)

Further reading

The physics shown here is really just a snapshot of results from **ALICE** at the LHC!

- > 400 ALICE papers from Run 1 and 2 of the LHC
- Recent review paper (published last week!) summarises the wealth of physics from this period

Eur.Phys.J.C 84 (2024) 8, 813

27 October 20

The ALICE experiment: A journey through QCD

Particle spectra

• Measurement of particle spectra 'starting point' of many measurements

e.g. measure...

- Yields with respect to pp collisions
- Yields vs reaction plane
- Yields vs centrality
- Total 'integrated' particle yields
- Ratios of different particle yields

Initial temperature of the QGP

- Direct photons (not from hadron decays) emitted at different stages of the collision
- Thermal photons give access to the initial temperature of the system created in heavy-ion collision.

• initial hard scattering produces prompt photons, while black body radiation from QGP produces thermal photons

$$T_{e\!f\!f}=304\pm11\pm40~{\rm MeV}$$

- Temperature higher than critical temperature ~150 MeV
- (Note effective temperature not exact as radiation 'blue-shifted' due to expansion of system)

Strangeness enhancement

- **pp collisions:** Suppression of strangeness production (locality of strangeness conservation)
- Heavy-ion collisions: abundant thermal production of $s\bar{s}$ quarks due to equilibrated, deconfined phase
 - Production of multi-strange hadrons Ξ (*dss*) and Ω (sss) most sensitive to strangeness production of a system

Significant strangeness enhancement seen in heavy-ion collisions \rightarrow deconfinement!

Consistent results at low energy (RHIC) and high energy (LHC) \rightarrow enhancement dependent only on participant nucleons/final state multiplicity

8

ALICE: Phys. Lett. B 728 (2014) 216

Probing how the QGP 'liquid' flows

- Due to pressure gradients **spatial anisotropy** in collision translates to **momentum anisotropy** \bullet
- Magnitude of momentum anisotropy relates relates to how much 'flow' builds up

• Can be characterised by anisotropic flow coefficients v_n - expand azimuthal momentum in a Fourier series

- how are constituents coupled? Fundamental properties such as viscosity can be determined from data

Probing how the QGP 'liquid' flows

- Due to pressure gradients **spatial anisotropy** in collision translates to **momentum anisotropy** \bullet
- Magnitude of momentum anisotropy relates relates to how much 'flow' builds up

Similar expansion pattern to ultra-cold (~ 10^{-6} K) lithium atoms

Striking similarity despite factor ~ 10^{18} difference in temperature!

• Can be characterised by anisotropic flow coefficients v_n - expand azimuthal momentum in a Fourier series

- how are constituents coupled? Fundamental properties such as viscosity can be determined from data

Probing how the QGP 'liquid' flows

$$\frac{dN}{d\phi} \propto \sum_{n=1}^{\infty} 2v_n(p_T) \cos(n(\phi - \Psi_n))$$

- and 'associated' particles)

• Can also probe collective effects via two particle correlations (correlation between 'trigger'

• Long-range correlations over wide η range ('ridge') understood to be due to flow of system

Probing how the QGP 'liquid' flows - elliptic flow v_2

 shear viscosity over entropy density η/s ~ 0.1
→ smallest viscosity of any known liquid

Close to lower limit from AdS/CFT (correspondence between stronglycoupled quantum theories and certain weakly-coupled quantum gravity theories)

 $\eta/s = 1/4\pi \sim 0.08$

Probing the QGP with jets and heavy-flavour particles

- - the collision, and experience full evolution of the system

• Out-of equilibrium 'hard' probes provide a unique way to probe the medium created

• Jets and heavy-flavour (charm and beauty) particles - created at the start of

Can we map the 'Bethe-Bloch curve of QCD matter'?

Jets in heavy-ion collisions

- Evolution of hard parton (quark or gluon) \rightarrow gluon radiation
- Experimentally measured as collimated spray of hadrons

Reconstruct jets

 \rightarrow measure initiating parton

Jet algorithms - precise connection between QCD theory and experiment

e.g. anti- $k_{\rm T}$

M. Cacciari, G. Salam, G. Soyez, JHEP 04 (2008) 063

Jets in heavy-ion collisions

- Evolution of hard parton (quark or gluon) \rightarrow gluon radiation
- Experimentally measured as collimated spray of hadrons
- **Reconstruct** jets
- \rightarrow measure initiating parton

Jets interact with QGP - manifests in different ways

e.g:

Energy loss - *energy transport* outside jet cone

Jet algorithms - precise connection between QCD theory and experiment

e.g. anti- $k_{\rm T}$

M. Cacciari, G. Salam, G. Soyez, JHEP 04 (2008) 063

Response of medium to (out-of-equilibrium) jet probe - wake effects

15

Jets in elementary particle collisions (e+e-, pp)

https://journals.aps.org/collections/50-years-QCD

At LHC QCD predictions describe data over 14 orders of magnitude of production cross section

Energy loss in the QGP via nuclear modification factor *R*_{AA}

Fig. F. Bellini

Asks the question:

How is the production of 'something' *different* in collisions of protons/neutrons *within nuclei*, with respect to the *same number of independent proton-proton collisions*?

- $R_{AA} = 1$: **no modification** due to presence of QGP
- *R_{AA}* < 1 at high *p_T*: suppression due to presence of QGP
 interpreted as *energy loss* due to partonic interactions

Partonic energy loss in the QGP

J. Harris, B. Müller, arxiv: 2308.05743

• Significant suppression of high- p_T charged hadrons / jets \rightarrow medium-induced energy loss

Coincidence measurements of jets

- Can coincidence measurements resolve short-distance QGP structure?
 - Transverse broadening of jet also gives fundamental insight into transport properties of QGP
- Example -> hadron+jet correlation measure azimuthal angle between high- p_T hadron and jet

how does a strongly-coupled liquid emerges from (weakly-coupled) constituent degrees of freedom? 'Rutherford-like' scattering experiment

F. D'eramo, M. Lekaveckas, H. Liu, K. Rajagopal, JHEP 05 (2013) 031 F. D'eramo, K. Rajagopal, Y. Yin JHEP 01 (2019)

P. Caucal, Y. Mehtar-Tani: *Phys.Rev.D* 106 (2022) 5, L051501 JHEP 09 (2022) 023 Phys.Rev.D 108 (2023) 1, 014008

Coincidence measurements of jets

- Can coincidence measurements resolve short-distance QGP structure?
 - Transverse broadening of jet also gives fundamental insight into transport properties of QGP
- Example -> hadron+jet correlation measure azimuthal angle between high- p_T hadron and jet

Developed tools to push jet measurements down to low $p_T!$

Coincidence measurements of jets

10

Significant broadening of $\Delta \phi$ distribution *R*-dependence and model comparisons indicates its due to medium response to jets

Theory indicates that internal structure of jets may be most sensitive to large-angle scatterings

Heavy-flavour measurements

Can reconstruct heavy hadrons via decay products

- Background and charm from decays of B hadrons distinguished from 'prompt' charm via displaced vertex
- Signal extracted via fits to invariant mass distribution

Relatively small production cross sections and branching fractions - Machine learning techniques crucial in many cases to separate signal from huge background present in HI collisions

Heavy-flavour measurements - pp collisions

Can reconstruct heavy hadrons via decay products

- Background and charm from decays of B hadrons distinguished from 'prompt' charm via displaced vertex
- Signal extracted via fits to invariant mass distribution

Charm mesons (from c and from beauty decays) described well by pQCD predictions in pp collisions ALICE: JHEP 05 (2021) 220

Heavy-flavour measurements - pp collisions

'Conventional' models

Charm **baryon** production **not described** well by these predictions → baryon hadronisation not understood in pp collisions!

ALICE: JHEP 05 (2021) 220 $\widehat{\mathbf{U}}$ ALICE pp, $\sqrt{s} = 5.02 \text{ TeV}$ $d^2\sigma/(dydp_T)$ (µb GeV⁻¹ Prompt Λ_c^+ , |y| < 0.5 10^{2} -- data **GM-VFNS** 10 POWHEG+PYTHIA6 with CT14NLO PDF • 10- \pm 2.1% lumi. unc. not shown Data POWHEG Data 1-VFNS GN 10 p_ (GeV/*c*) 5 0

Heavy-flavour energy loss in the QGP

D-meson energy loss measurements provide tight constraints on transport properties of QGP medium

Thermal production of hadrons

- Bulk of the QGP consists of thermally-equilibrated light quarks (u, d, s) - $T_{QGP} > m_{u,d,s}$ - light quarks can be thermally created
- Total production yields of particles gives information about system at freeze-out (temperature, volume, baryochemical potential μ_{R})
- Comparison to statistical hadronisation models confirms thermal production of hadrons

From free parameters of models, Chemical freeze-out (hadronisation) $T_{chem} pprox$ 156 MeV, $\mu_B pprox$ 0 In agreement with lattice QCD calculations shown yesterday

dN/dy 10 **10**⁻¹ 10^{-3} 10⁻⁵ 10⁻⁷ (mod.-data) 0.5 mod. 0 -0.5data) ta (mod.-o o_{dat}

10³

Hadronisation in heavy-ion collisions

- Measurement of baryon-to-meson ratios probe hadronisation mechanisms
- Enhancement of baryons with respect to pp collisions coalescence of deconfined quarks rather than usual 'vacuum' fragmentation

How small can a QGP be?

ALICE: Phys. Lett. B 708 (2012) 249-264

Long-range correlations
 over wide η range
 ('ridge') understood to be
 due to flow of system
 Output
 Description:
 Output
 Output
 Description:
 Output
 Description:
 Descritting:
 Descr

How small can a QGP be?

ALICE: Phys. Lett. B 708 (2012) 249-264

 $2 < p_{T,trig} < 4 \text{ GeV}/c$ $1 < p_{T,assoc} < 2 \text{ GeV}/c$

• Long-range correlations over wide η range ('ridge') understood to be due to flow of system

 $\mathbf{R}(\Delta\eta,\Delta\phi)$ Du CMS: JHEP 1009:091,2010

Ridge also (unexpectedly) seen in p-Pb and high-multiplicity pp collisions (now even HM e+e-!) e+e-: Yu-Chen Chen, Moriond '24

ALICE: Phys.Lett. B719 (2013) 29-41

How small can a QGP be?

ALICE: Phys. Lett. B 708 (2012) 249-264

 $2 < p_{T,trig} < 4 \text{ GeV}/c$ $1 < p_{T,assoc} < 2 \text{ GeV}/c$

Long-range correlations over wide η range ('ridge') understood to be due to flow of system

 $\mathbf{R}(\Delta \eta, \Delta \phi)$

Ridge also (unexpectedly) seen in p-Pb and high-multiplicity pp collisions (now even HM e+e-!) e+e-: Yu-Chen Chen, Moriond '24

CMS: JHEP 1009:091,2010

Many QGP-like effects

e+e-: Yu-Chen Chen, Moriond '24

...+ much more...!

 $\gamma - \gamma$ collider

'Double-slit' experiment

...+ more

- https://home.cern/news/news/physics/alice-does-double-slit

Extracting quantitative information from measurements

- years of study at RHIC/LHC
- 'Multi-messenger', with all measurements sensitive to same underlying physics

Fig. P. Jacobs

O(100s) of measurements/observables/observations from QGP studies over ~25

Bayesian parameter estimation

- Bayesian inference parameter estimation to constrain model parameters natural candidate for this task
 - Last few years have seen many exciting developments, e.g.

Combination of elliptic flow measurements @ ALICE

Combination of hadron RAA measurements @ LHC + RHIC

Future upgrades at the LHC

• Current ALICE setup scheduled to run until the end of Run 4 (2032), LHC scheduled to run with heavy-ions until 2041

Longer term LHC schedule

In January 2022, the schedule was updated with long shutdown 3 (LS3) to start in 2026 and to last for 3 years. HL-LHC operations now foreseen out to end 2041.

ITS3 - Inner tracker upgrade **FOCAL** - forward calorimeter

ALICE3 - 'ultimate' HI experiment

Inner tracker upgrade 'ITS3'

- - Homogeneous material distribution

ITS3 LOI: CERN-LHCC-2019-018

Forward Calorimeter 'FOCAL'

- Exciting low-x hadron physics program, complimentary to EIC

TDR: CERN-LHCC-2024-004 Physics: ALICE-PUBLIC-2023-001

Forward (3.4<n<5.8) EM calorimeter + hadronic calorimeter to be installed for Run 4

The ultimate heavy-ion experiment - ALICE3

The next-generation heavy-ion experiment for LHC Run 5 and 6 (2035 onwards)

- Novel and innovative detector concept
 - Compact and lightweight all-silicon tracker
 - Retractable vertex detector
 - Extensive particle identification
 - Large acceptance
 - Superconducting magnet system
 - Continuous read-out and online processing

Ultimate performance in terms of acceptance, interaction rate and tracking precision

Summary

- ALICE (A Large Ion Collider Experiment) is the experiment at the LHC dedicated to studying the deconfined state of QCD known as the Quark-Gluon Plasma (QGP)
- ALICE has a rich and diverse physics programme and is probing the properties of the QGP with unprecedented accuracy, as well as addressing many topics in QCD and beyond
- There is a bright (and hot!) future ahead of us

Further reading:

- [future] CERN Yellow Report on QCD with heavy-ion beams at the HL-LHC, arXiv:1812.06772

• [review] ALICE Collaboration, The ALICE experiment - - A journey through QCD, arXiv:2211.04384 • [future] Letter of intent for ALICE 3: A next generation heavy-ion experiment at the LHC, arXiv:2211.02491

Contact: jknorman@liverpool.ac.uk

Jet asymmetry due to the QGP

• Measurement of two high p_T jets in Pb-Pb collisions shows significant asymmetry

• When one jet has a large amount of QGP to travel through, lots of energy lost

