

AmBeSim

Filippo Falezza

Theory Framework Motivation Model Comparison Results

Simulation of a ²⁴¹Am –⁹Be neutron source and its moderation using Geant4

Filippo Falezza, J. Bishop, N. Curtis, Tz. Kokalova, C. Wheldon University of Birmingham, UK

13th August 2024

Introduction

AmBeSim

Filippo Falezza

Theory Framework Motivation Model Comparison Results

AmBe neutron source in water tank.

Fast neutrons are moderated by water. Used for

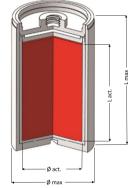
Mimic neutron moderation in a nuclear reactor

Neutron activate samples for undergraduate forensic experiments But how effective is the moderation?

Reaction of Interest

AmBeSim

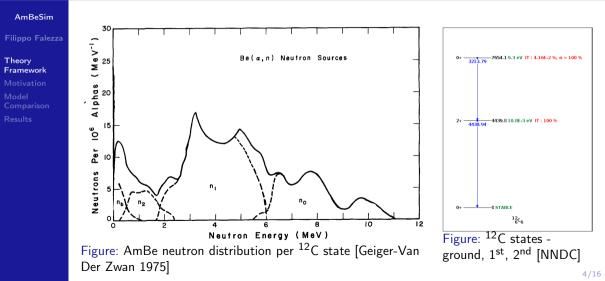
Filippo Falezza


Theory Framework

Mixture of AmO₂ and ⁹Be powder. $>99\%^{241}$ Am Stainless-steel casing

- ²⁴¹Am is α emitter:
 - 5.4856 MeV at 84.8% intensity
 - 5.4428 MeV at 13.1% intensity
 - 5.388 MeV at 1.660% intensity

■ 5.500 ... Fast Neutron reaction: ${}^{9}\text{Be}(\alpha, n)^{12}\text{C}^*$

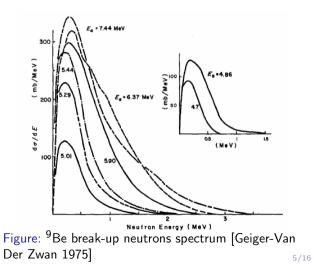

Q value: 5.702 MeV ¹²C can be either in ground, first, or second excited

Source drawing, AmBe mixture (red) encased in steel [Raims Ltd]

¹²C states in AmBe

Thermal Spectrum

AmBeSim

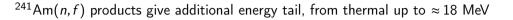

Filippo Falezza

Theory Framework

Motivation Model Comparisor Results

From break-up reactions in ⁹Be

$${}^{9}\text{Be}(\alpha, \alpha'){}^{9}\text{Be} \rightarrow {}^{8}\text{Be} + n$$


Fission neutrons

AmBeSim

Filippo Falezza

Theory Framework

Motivation Model Comparison Results

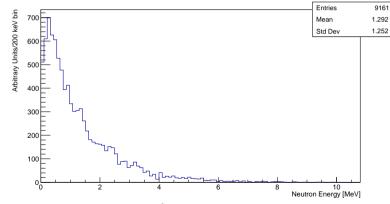


Figure: Secondary neutrons from ⁹Be break-up and fission products (high energy)

Investigation of water bath

AmBeSim

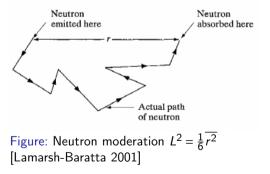
Filippo Falezza

- Theory Framework Motivation
- Model Comparisor Results

- Source neutron spectrum is known
- Source is at centre of 1 m tall, 1 m diameter water tank. The moderation profile is unknown

Two group model

AmBeSim

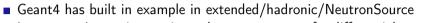

Filippo Falezza

Theory Framework **Motivation** Model Comparison Results Does it actually agree with the two-group neutron moderation model? Two group model:

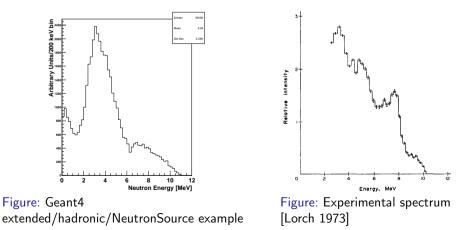
$$\Phi_{T} = \frac{SL_{T}^{2}}{4\pi r \overline{D}(L_{T}^{2} - \tau_{T})} (e^{-r/L_{T}} - e^{-r/\sqrt{\tau_{T}}})$$

describes thermal neutron difusion and fast to thermal neutron moderation.

- $\tau_T \rightarrow$ (Fast) neutron age
- $L_t \rightarrow$ Thermal diffusion length



Geant4 isotropic assumption


AmBeSim

Filippo Falezza

Theory Framework **Motivation** Model Comparison Results

It assumes Isotropic reaction - does not account for differential cross section

Geant4 isotropic assumption

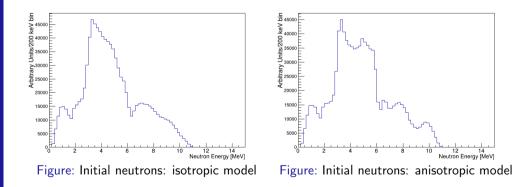
AmBeSim

- Filippo Falezza
- Theory Framework Motivation Model Comparison

- Geant4 has built in example in extended/hadronic/NeutronSource
- It assumes Isotropic reaction does not account for differential cross section

Figure: It's actually pretty bad [Meme]

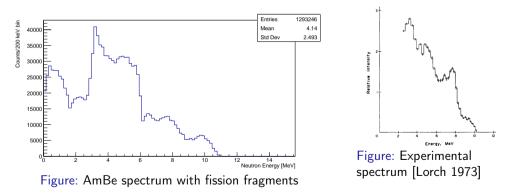
Differential cross-section contribution


AmBeSim

Filippo Falezza

Theory Framework Motivation Model Comparison

Anisotropic approach first suggested in 1963 by Anderson and Bond Our model:



AmBe model in Geant4

AmBeSim

Filippo Falezza

Theory Framework Motivation Model Comparison **Results** Bert HPT Physics class for high precision neutrons down to thermal energies Generated 1s of fast neutrons: 2.27×10^6 fast neutrons/1Ci/s

Structure matches, intensities differ because of acquisition techniques

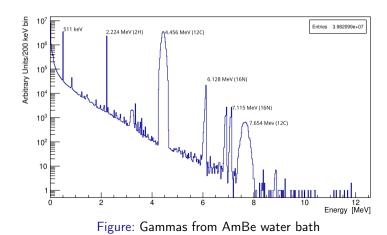
Neutron spectrum

AmBeSim

Filippo Falezza

- Theory Framework Motivation Model Comparison
- Results

- AmBe Fast neutron spectrum verified
- ⁹Be break-up neutrons need to be implemented anisotropically
- Production rate of fission products to be verified


γ spectrum

AmBeSim

Filippo Falezza

Theory Framework Motivation Model Comparison Results

Produced γ - Geant4 scoring

13/16

Equivalent Dose - Preliminary

AmBeSim

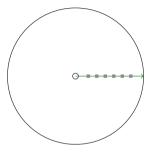
Filippo Falezza

Theory Framework Motivation Model Comparison Calculated dose for outgoing γ and neutrons from the water bath and verified against experimental Sampling over 0.2 s spectrum

Particle	Experimental [μ Sv/h]	Simulated [μ Sv/h]
γ	1.54	8.05
n	0.8	1.68

Notes:

- Neutrons measured with Nuclear Enterprises NM-2 dose monitor (*BF*₃)
- Gammas measured with dose monitor calibrated in the 59-1332 keV range



Current analysis

AmBeSim

Filippo Falezza

Theory Framework Motivation Model Comparison **Results**

- \blacksquare Experimental BF_3 and ${}^3\mathsf{He}$ flux to extrapolate neutron age and thermal diffusion length
- γ spectrum from AmBe using hpGe for to verify production rate of fission products and dose rate

Measurements ongoing...

Summary

AmBeSim

Filippo Falezza

- Theory Framework Motivation Model Comparison
- Results

- Validated AmBe neutron spectrum in Geant4
- Secondary γ compatible with expected ones
- Dose analysis WIP
- Two-group analysis WIP

Thank you for listening