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Model mass 
fraction
Solar system 
mass fraction

Underproduction Equal to solar 
production

Overproduction

A model produces less of an 
isotope than we see in our solar 
system

A model produces exactly the 
amount of an isotope we see in the 
solar system

A model produces more of an 
isotope than we see in our solar 
system

1

Independent variable of 
choice

Important term in nuclear astrophysics: Overproduction 
and Underproduction



A problem in nuclear astrophysics: The p-nuclides
● Set of ~35 proton rich isotopes, ranging from 74Se to 196Hg that cannot be made by the s- or r-process

● Models underproduce p-nuclides by a factor of four compared to their solar system abundances (Pignatari et al. 2016)

     — Heavy p-nuclides

What ~106Cd - 196Hg (orange)

Where Mainly core collapse 
supernovae (CCNSe)

How Mainly gamma-process 
(photodisintegrations) 

Problems Different CCNSe models 
produce varying amounts of 
p-nuclides, particular heavy 
p-nuclides present problems 

By Admiral sayony - Own workFile was 
created using data from NuDat 3. National 
Nuclear Data Center, information extracted 
from the NuDat database, 
https://www.nndc.bnl.gov/nudat/, CC 
BY-SA 4.0, 
https://commons.wikimedia.org/w/index.ph
p?curid=115494479
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A problem in nuclear astrophysics: The p-nuclides
● Set of ~35 proton rich isotopes, ranging from 74Se to 196Hg that cannot be made by the s- or r-process

● Models underproduce p-nuclides by a factor of four compared to their solar system abundances (Pignatari et al. 2016)

     — Heavy p-nuclides Light p-nuclides

What ~106Cd - 196Hg (orange) 74Se - ~102Pd (green)

Where Mainly core collapse 
supernovae (CCNSe)

?

How Mainly gamma-process 
(photodisintegrations) 

?

Problems Different CCNSe models 
produce varying amounts of 
p-nuclides, particular heavy 
p-nuclides present problems 

Don’t know how or 
where the light 
p-nuclides are 
produced

By Admiral sayony - Own workFile was 
created using data from NuDat 3. National 
Nuclear Data Center, information extracted 
from the NuDat database, 
https://www.nndc.bnl.gov/nudat/, CC 
BY-SA 4.0, 
https://commons.wikimedia.org/w/index.ph
p?curid=115494479
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A particular problem: 92Mo
● We don’t know:

○ Where?

○ How?

● Underproduced in models by 

an order of magnitude 

compared to its solar system 

abundance

● Our goal: to find overproduction 

of 92Mo

Roberti el al. 2023 - 92Mo consistently 
not produced across four different 
core collapse supernovae models
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The rapid proton capture process in X-ray Bursters (XRB)

Proton 
capture

Beta 
decay

NASA/CXC/M. WEISS

● Proton rich material accretes from 

companion star’s hydrogen envelope

● rp-process occurs

● 92Mo overproduced (José 2010)
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NASA/CXC/M. WEISS

X-ray Burster

Time
Common envelope

Star 1: star with a hydrogen rich envelope
Star 2: neutron star

Izzard et al. 2011 12

Introducing an alternative accretion scenario  



How material escapes from a common envelope (CE)

● Neutron star accretes proton rich material 

● ~25% of accreted material can escape neutron star! (Fryer 

et al. 2006)

● At end of CE, accreted material enters interstellar medium

● Significant since this does not happen in XRB
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Our model
Proton rich 
material

92Mo ejected?

Nucleosynthesis happens Disc evolution
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NuGrid - PPN

● Calculates nuclear yields 

based on: 

●

○ Initial abundances provided 

○ Temperature 

○ Density

○ Time 

● Nuclear inputs from mainly REACLIB

● Outputs mass fraction information
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Overproduction of 92Mo

● 40% of models 

overproduce 92Mo

● Most overproduced by 

just under four orders of 

magnitude 

○ (Dex 3.7)

● For p-nuclide 

overproduction: GOOD
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Summary
● Motivation: p-nuclide 92Mo is underproduced in current p-process models

● Goal: to find a scenario which overproduces 92Mo in order to inject *more* 
92Mo into our Galaxy than was initially there

● Our work: gave a model of an accretion disk around a neutron star to a 

nuclear post processing network

● Result: Our model overproduces light p-nuclide 92Mo
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Overproduction Trends in 94Mo
● 7 out of 110 

trajectories 

overproduce 94Mo

● Most overproduced 

by just over one 

orders of magnitude 

○ (Dex 1.1)



Overproduction Trends in 96Ru
● 47 out of 110 

trajectories 

overproduce 96Ru

● Most overproduced 

by just over four 

orders of magnitude 

○ (Dex 5.0)



Overproduction Trends in 98Ru
● 49 out of 110 

trajectories 

overproduce 98Ru

● Most overproduced 

by just over six 

orders of magnitude 

○ (Dex 6.1)
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Helium 
core

Hydrogen shell

Ivanova et al. 2013Neutron star CE
● In my system of interest: 

○ A = star entering red giant phase

■ Hydrogen envelope

○ B = neutron star 

● Neutron star accretes proton rich material 

○ ~25% of accreted material can escape neutron 

star! (Fryer et al. 2006)

○ Accreted material moves back into hydrogen 

envelope of A 

○ At end of CE, accreted material escapes into ISM

● Significant since this does not happen in XRB 9



Common envelopes (CE)
● Stars existing in a shared stellar envelope 

● Process:

○ A goes through an expansion phrase

■ Overflows its Roche Lobe

○ Material accretes onto B faster than it can incorporate it 

○ B is overwhelmed by material from A, and is engulfed 

by A’s stellar envelope

○ At some point, A’s stellar envelope is ejected into 

interstellar medium (ISM) and CE ends

● B accretes material from A the entire time

Ivanova et al. 2013

A B

A
B

B

A
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NASA/CXC/M. WEISSXRB

XRB happen here - stable 
mass transfer

What about accretion 
around a neutron star 
which happens here?
A common envelope

Star 1: red giant with a hydrogen rich 
envelope
Star 2: neutron star

Types of mass transfer
No mass 
transfer

Potential for a 
lot of mass 
transfer

Roche Lobe 
overflow 
occurs, mass 
transfer can 
occur from 
here

Izzard et al. 2011 7


