

Underproduced nuclides in unexplored explosions

Sophie Abrahams (she/her) Supervisors: Prof Alison Laird, Dr Christian Diget

(seda500@york.ac.uk)

A problem in nuclear astrophysics: The p-nuclides

- Set of ~35 proton rich isotopes, ranging from ⁷⁴Se to ¹⁹⁶Hg that cannot be made by the s- or r-process
- Models underproduce p-nuclides by a factor of four compared to their solar system abundances (Pignatari et al. 2016)

UNIVERSITY

-	Heavy p-nuclides	
What	~ ¹⁰⁶ Cd - ¹⁹⁶ Hg (orange)	
Where	Mainly core collapse supernovae (CCNSe)	
How	Mainly gamma-process (photodisintegrations)	
Problems	Different CCNSe models produce varying amounts of p-nuclides, particular heavy p-nuclides present problems	By Admiral sayony - Own workFile was created using data from NuDat 3. National Nuclear Data Center, information extracted from the NuDat database, https://owmon.dc.bnl.gov/nudat/, CC BY-SA 4.0, https://owmon.swikimedia.org/w/index.ph p?curid=115494479 8

A problem in nuclear astrophysics: The p-nuclides

- Set of ~35 proton rich isotopes, ranging from ⁷⁴Se to ¹⁹⁶Hg that cannot be made by the s- or r-process
- Models underproduce p-nuclides by a factor of four compared to their solar system abundances (Pignatari et al. 2016)

UNIVERSIT

The rapid proton capture process in X-ray Bursters (XRB)

• Proton rich material accretes from

companion star's hydrogen envelope

- rp-process occurs
- ⁹²Mo overproduced (José 2010)

Introducing an alternative accretion scenario

(a) Star 1: star with a hydrogen rich envelope Star 2: neutron star (c) X-ray Burster (d) (e) ۰ **Common envelope**

NASA/CXC/M. WEISS

Izzard et al. 2011

How material escapes from a common envelope (CE)

- Neutron star accretes proton rich material
- ~25% of accreted material can escape neutron star! (Fryer et al. 2006)
- At end of CE, accreted material enters interstellar medium
- Significant since this does not happen in XRB

NuGrid - PPN

- Calculates nuclear yields based on:
 - Initial abundances provided
 - Temperature
 - Density
 - Time
- Nuclear inputs from mainly REACLIB
- Outputs mass fraction information

Overproduction of ⁹²Mo

40% of models
overproduce ⁹²Mo

- Most overproduced by just under four orders of magnitude
 - (Dex 3.7)
- For p-nuclide overproduction: GOOD

Summary

• **Motivation:** p-nuclide ⁹²Mo is underproduced in current p-process models

Goal: to find a scenario which overproduces ⁹²Mo in order to inject *more*
⁹²Mo into our Galaxy than was initially there

• **Our work:** gave a model of an accretion disk around a neutron star to a nuclear post processing network

• **Result:** Our model overproduces light p-nuclide ⁹²Mo

Thank you to: Alex Hall-Smith, Josh Wilson, Alison Laird, Christian Diget

References:

- Pignatari M., Göbel K., Reifarth R., Travaglio C., 2016, IJMPE, 25, 1630003-232. doi:10.1142/S0218301316300034
- Roberti L., Pignatari M., Psaltis A., Sieverding A., Mohr P., Fülöp Z., Lugaro M., 2023, A\&A, 677, A22. doi:10.1051/0004-6361/202346556
- Nishimura N., Rauscher T., Hirschi R., Cescutti G., Murphy A.~S.~J., Fröhlich C., 2019, MNRAS, 489, 1379. doi:10.1093/mnras/stz2104
- Schatz H., Aprahamian A., Barnard V., Bildsten L., Cumming A., Ouellette M., Rauscher T., et al., 2001, PhRvL, 86, 3471. doi:10.1103/PhysRevLett.86.3471
- Xiong Z., Martínez-Pinedo G., Just O., Sieverding A., 2024, PhRvL, 132, 192701. doi:10.1103/PhysRevLett.132.192701
- Izzard RG, Hall PD, Tauris TM, Tout CA. 2011;7(S283):95-102. doi:10.1017/S1743921312010769
- Ivanova N., Justham S., Chen X., De Marco O., Fryer C.~L., Gaburov E., Ge H., et al., 2013, A\&ARv, 21, 59. doi:10.1007/s00159-013-0059-2
- Fryer C.~L., Herwig F., Hungerford A., Timmes F.~X., 2006, ApJL, 646, L131. doi:10.1086/507071
- Battino U., Pignatari M., Travaglio C., Lederer-Woods C., Denissenkov P., Herwig F., Thielemann F., et al., 2020, MNRAS, 497, 4981. doi:10.1093/mnras/staa2281
- Wanajo S., Müller B., Janka H.-T., Heger A., 2018, ApJ, 852, 40. doi:10.3847/1538-4357/aa9d97
- Herrera Y, Sala G, José 2023, A&A 678, A156

Overproduction Trends in 94Mo

7 out of 110

trajectories

overproduce 94Mo

Most overproduced
by just over one
orders of magnitude
(Dex 1.1)

Overproduction Trends in 96Ru

 47 out of 110 trajectories

overproduce 96Ru

 Most overproduced by just over four orders of magnitude
(Dex 5.0)

UNIVERSITY

Neutron star CE

- In my system of interest:
 - A = star entering red giant phase
 - Hydrogen envelope
 - B = neutron star
- Neutron star accretes proton rich material
 - ~25% of accreted material can escape neutron star! (Fryer et al. 2006)
 - Accreted material moves back into hydrogen envelope of A
 - At end of CE, accreted material escapes into ISM
- Significant since this does not happen in XRB

Common envelopes (CE)

- Stars existing in a shared stellar envelope
- Process:
 - A goes through an expansion phrase 0
 - **Overflows its Roche Lobe**
 - Material accretes onto B faster than it can incorporate it Ο
 - B is overwhelmed by material from A, and is engulfed Ο by A's stellar envelope
 - At some point, A's stellar envelope is ejected into Ο interstellar medium (ISM) and CE ends
- B accretes material from A the entire time

