Examining the north-west limit of octupole correlations in the light-actinide region using α -decay spectroscopy

Ben Hogg

STFC Nuclear Physics Summer School 11th – 24th August 2024

Deformed nuclei

- $\lambda = 1$: Dipole, centre of mass shift
- $\lambda = 2$: Quadrupole, axially asymmetric
- $\lambda = 3$: Octupole, reflection asymmetric

$$u = Orientation of deformation$$

Reflection-asymmetric nuclei

Characteristic properties:

- Interleaving opposite-parity energy levels in even-even nuclei
- Parity doublets in odd-mass nuclei
- Enhanced E1 transitions
- Large E3 transition probabilities

I. Ahmed and P. A. Butler, Ann. Rev. Nucl. Part. Sci 43, 72 (1990)

Reflection-asymmetric nuclei

Region of octupole deformation

- Part of the chart of nuclides where octupole correlations have been predicted and identified
- Even-even nuclei predicted to posses asymmetrically-deformed ground states marked in red
- Nuclei being studied marked in blue
- Green boundary marks region of odd-A octupole deformed nuclei
- Boundary in north-west of region is unknown

Z = 94 (Pu)	223 -		225 -		227 -		229 -		231 -
Z = 93 (Np)		223 9/2		225 -		227 -		229 -	
Z = 92 (U)	221 9/2 ⁺		223 -		225 -		227 (3/2 ⁺		229 3/2 ⁺
Z = 91 (Pa)		221 9/2		223 -		225 5/2		227 5/2	
Z = 90 (Th)	219 _{9/2} +		221 _{7/2} +		223 5/2 ⁺		225 3/2 ⁺		227 1/2 ⁺
Z = 89 (Ac)		219 _{9/2} -		221 5/2		223 5/2		225 3/2 [–]	
Z = 88 (Ra)	217 9/2 ⁺		219 _{7/2} +		221 5/2 ⁺		223 _{3/2} +		225 1/2 ⁺
N =	= 129	130	131	132	133	134	135	136	137

Y. Cao et al., Phys. Rev. C 102, 024311 (2020).

Fusion-evaporation reactions

Reaction	Beam E (MeV)	Beam I (pnA)	σ (nb)	T _{1/2}	Run time (hrs)
²⁰⁸ Pb(²² Ne, 7n) ²²³ U	148	200	300	18 µs	~ 39
²⁰⁹ Bi(²² Ne, 6n) ²²⁵ Np	136	200	36	3.6 ms	~ 43
²⁰⁹ Bi(²² Ne, 4n) ²²⁷ Np	112	140	300	510 ms	~ 20

- Carried out at the Accelerator Laboratory at the University of Jyväskylä, Finland (JYFL)
- Similar reactions have been used in previous experiments at JYFL
- Production cross section for ²²⁷Np reported by Andreyev et al
- Production cross section for ²²⁵Np and ²²³U estimated using statistical-model code Alice

A. N. Andreyev et al., Z. Phys. A 337, 229 (1990).

Experimental setup

α -decay spectroscopy

- Cross sections are too low for γ -ray spectroscopy
- Energy of α particles can be measured
- Branching ratio of α-decay branches can be determined
- α-decay hindrance factors can be established
- α - γ coincidences; investigate α -decaying fine structure
- Establishment of ground-state spins

α -decay chains

²²⁷Np analysis

- Alpha1-alpha2 spectrum, time gated for $7t_{1/2}(^{227}\text{Np})$ and 7 $t_{1/2}(^{223}\text{Pa})$
- Some coincidences between 227_{Np}, 223_{Pa and} 225_{Pa}, 221_{Ac}
- Difficulties in resolving recoils; recoils sometimes overlap with alpha particles

227_{Np} analysis

Previous study – V. Ninov et al., Z. Phys. A **336**, 473 (1990)

 $\alpha\text{-particle energies: }7677(20)\ \text{keV}$ and $7650(20)\ \text{keV}$

Tentative α -particle energies: 7694(11) keV and 7678(11) keV

Conclusions & future analysis

- The region of octupole correlations in the light actinides is not well defined
- Obtain information about the ground-state spin and α -decaying fine structure of $^{227,225}Np$ and ^{223}U
- Two alpha decays of ²²⁷Np have been tentatively identified
- Correlation of decay chains to be improved
- Hindrance factors can compare ²²⁷Np ground state with other odd-A nuclei in the isotonic chain
- This analysis will be carried out for ^{225}Np and ^{223}U

B. J. M. Hogg¹, J. M. Keatings¹, A. D. Briscoe², E. Parr², J. F. Smith¹,
B. Alayed², K. Auranen³, H. Ayatollahzadeh¹, V. Bogdanoff³,
P. A. Butler², R. Chapman¹, T. Grahn³, P. T. Greenlees³,
H. Joukainen³, R. Julin³, H. Jutila³, H. Kokkonen³, M. Leino³,
J. Louko³, M. Luoma³, A. McCarter², J. Ojala³,
R. D. Page², J. Pakarinen³, P. Rahkila³, P. Ruotsalainen³, J. Saren³,

M. Satrazani², J. Uusitalo³, D. White¹ and T. Wonderley².

University of the West of Scotland | 2. University of Liverpool
 University of Jyväskylä

227_{Np} analysis

	Ninov et al.	This study
Alpha particle energies (keV)	7677(20)	7694 (11)
	7650(20)	7678 (11)
Measured half life (ms)	510 (60)	720 (140)

These are tentative results. The analysis is ongoing.

K.-H. Schmidt, The European Physical Journal A 8, 141 (2000).