Direct reaction studies with the ISOLDE Solenoidal Spectrometer

Ben Jones Supervisors: Dr Liam Gaffney and Professor Robert Page

0

Direct reactions

(d,p), (p,d) - reveal information about single particle states

(t,p), (p,t) - gives information on pairing correlations

(d,d'), (p,p') - used as a probe for collective behavior

• Radioactive ion beams are produced via the ISOL method

• ISS is situated at the end of the HIE-ISOLDE beamline

2320

- Reaccelerated RIBs reach our setup at energies up to 10 MeV/u
- Reactions occur in inverse kinematics

Solenoidal technique

Calibrations

- Hexagonal array of 24 position sensitive DSSDs
- Composite $\alpha\mbox{-source}$ used to calibrate the ISS array
- Manufacturer states Al dead layer is 0.4 μm
- Energy loss is ${\sim}100$ keV/µm in Al dead layer
- Need to correct for energy losses in the dead layer to properly calibrate the DSSDs

- Use ASICs internal pulser to send equally spaced signals into each channel on the DSSD
- "Align" uncalibrated channels with by subtracting offset

• By measuring the dependance of the n-side energy on θ , the dead-layer can be determined

$$E_{arb} = E_{det} * 1/Gain = \left(E_0 - \left\langle rac{dE}{dx}
ight
angle rac{d_0}{\cos heta}
ight) * 1/Gain$$

$$m = \left\langle \frac{dE}{dx} \right\rangle d_0 * 1/Gain, \quad c = E_0 * 1/Gain$$

$$d_0 = -\frac{m \cdot E_0}{\left\langle \frac{dE}{dx} \right\rangle \cdot c}$$

128 p-side strips (\sim 125 mm)

- 128 pixels per n-side gives many data points
- Measurement was performed for a total of 5 days at 2 different distances

- Measured value deviates from manufacturers value by 0.1 μm , meaning the α loses \sim 15 keV more in the dead layer than originally thought

Proof of principle experiment

 ²²Ne(d,p)²³Ne at 6.05 MeV/u chose as a commissioning experiment for ISS to match experiment performed in normal kinematics with a gas target

- Blocker infront of the array to stop double turns
- 76 μ g/cm² CD₂ target
- Luminosity monitor measures elastically scattered deuterons for absolute normalisation
- dE-E recoil detector can be used to remove fusion evaporation background

Lab energy vs z-distance

Singles - Energy vs z

- Gating on recoils removes a large amount of background
- Kinematic lines for ²²Ne(d,p)²³Ne clearly visible

• Large fusion evaporation background in singles spectra

Excitation energy

- Time-random subtraction then gives even better signal-background
- Resolution of 100 keV -> good separation between states

Beam Intensity

• Normalization determined from yield of elastically scattered deuterons

Extracted cross sections

• Cross sections for each can be extracted from the measured yield

$$\frac{d\sigma}{d\Omega} = \frac{Y}{IN_0\Delta\Omega\varepsilon}$$

- Geometric efficiency from blocked trajectories determined using a Geant4 simulation
- Solid angle coverage is 94% in θ and 70% in ϕ

Extracted cross sections

36

 θ_{cm} (deg.)

Extracted cross sections

- Measured cross sections and spectroscopic factors are similar for the ISS experiment and the experiment performed in normal kinematics by Lutz et al.
- Provides confidence in measurements performed on exotic nuclei

Thanks for listening!

Summary and Outlook

- Proof of principle measurement provides confidence in cross sections measured with ISS
- Plans to measure ¹⁴⁶Ce(d,d') at ISS to probe octupole collectivity

