The Fast-Timing Technique for Neutron-Rich Lanthanides

FAYE ROWNTREE

What is the fast-timing technique?

•Measuring the lifetime of excited states within the nucleus

•"short" lifetime < 100ps

•"long" lifetime > 100ps

What is the fast-timing technique?

•Detection of γ -rays emitted after transitions in the nucleus •Can also use **electrons** emitted in β^- decay γ State of interest γ interest

•Requires γ - γ or β - γ coincidences

The Decay Chain

 $^{146}Cs \rightarrow ^{146}Ba \rightarrow ^{146}La \rightarrow ^{146}Ce$

146Ce	147Ce	148Ce	149Ce	150Ce	151Ce	152Ce	153Ce	154Ce	155Ce
145La	146La	147La	148La	149La	150La	151La	152La	153La	154La
	×								
144Ba	145Ba	146Ba	147Ba	148Ba	149Ba	150Ba	151Ba	152Ba	153Ba
		X							
143Cs	144Cs	145Cs	146Cs	147Cs	148Cs	149Cs	150Cs	151Cs	152Cs

TRIUMF

GRIFFIN Spectrometer

Unstable Cs beam hits target...

LaBr₃

...tape removes material

Tape

Time to Amplitude Converters (TACs)

 Each LaBr₃ detector is connected to the START and STOP inputs of corresponding TACs

•STOP signal has a set **delay**

•There are 7 TACs in total (+1 for the ZDS)

Delayed/Antidelayed

•TAC signal is produced using **START** and **STOP**

•If feeder is detected before decay, configuration is **delayed**

•If decay is detected before feeder, configuration is **antidelayed**

Delayed/Antidelayed

What is a convoluted gaussian?

What is a convoluted gaussian?

Fitting

•Fitting model is a convoluted gaussian

•Apply energy gating on LaBr₃ detectors

•Least-squares minimisation fitting routine

 ${}^{\bullet}t_{_{1/2}}$ can be calculated directly from λ

Background Subtraction

 $p|p_{total} = p|p - p|bg - bg|p + bg|bg$

Results so far: 2⁺ in ¹⁴⁶Ba

•Accepted t_{1/2} = 859(29) ps

•Measured t_{1/2} = **848(6) ps**

Results so far: 2⁺ in ¹⁴⁶Ce

Context

PHYSICAL REVIEW C 104, 044324 (2021)

Evolution of octupole deformation and collectivity in neutron-rich lanthanides

K. Nomura ^(a), ^{1,*} R. Rodríguez-Guzmán ^(a), ² L. M. Robledo ^(a), ^{3,4} J. E. García-Ramos ^(a), ^{5,6} and N. C. Hernández ^(a)
¹Department of Physics, Faculty of Science, University of Zagreb, HR-10000 Zagreb, Croatia
²Physics Department, Kuwait University, 13060 Kuwait, Kuwait
³Departamento de Física Teórica and CIAFF, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
⁴Center for Computational Simulation, Universidad Politécnica de Madrid, Campus de Montegancedo, Bohadilla del Monte, E-28660-Madrid, Spain
⁵Departamento de Ciencias Integradas y Centro de Estudios Avanzados en Física, Matemática y Computación, Universidad de Huelva, E-21071 Huelva, Spain

⁶Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Fuentenueva s/n, 18071 Granada, Spain ⁷Departamento de Física Aplicada I, Escuela Politécnica Superior, Universidad de Sevilla, E-41011 Seville, Spain

(Received 7 June 2021; accepted 4 October 2021; published 21 October 2021)

FIG. 1. The SCMF-PESs obtained for ^{140–148}Xe, ^{142–150}Ba, ^{144–152}Ce, and ^{146–154}Nd are plotted as functions of the quadrupole β_2 and octupole β_3 deformation parameters. The color code indicates the total HFB energies (in MeV) plotted up to 5 MeV with respect to the global minimum. The energy difference between neighboring contours is 0.2 MeV. For each nucleus, the global minimum is indicated by a red solid circle. Results have been obtained with the Gogny-D1M EDF.

Context

Nuclear Instruments and Methods in Physics Research A280 (1989) 49-72 North-Holland, Amsterdam

A METHOD FOR PICOSECOND LIFETIME MEASUREMENTS FOR NEUTRON-RICH NUCLEI (1) Outline of the method

H. MACH^{1,2)*}, R.L. GILL²⁾ and M. MOSZYŃSKI^{2,3)}

1) Clark University, Worcester, MA 01610, USA

2) Brookhaven National Laboratory, Upton, NY 11973, USA

³⁾ Institute for Nuclear Studies, PL 05-400, Świerk-Otwock, Poland

Received 6 March 1989

PRL 116, 112503 (2016) PHYSICAL REVIEW LETTERS week ending 18 MARCH 2016

Direct Evidence of Octupole Deformation in Neutron-Rich ¹⁴⁴Ba

B. Bucher,^{1,*} S. Zhu,² C. Y. Wu,¹ R. V. F. Janssens,² D. Cline,³ A. B. Hayes,³ M. Albers,² A. D. Ayangeakaa,² P. A. Butler,⁴ C. M. Campbell,⁵ M. P. Carpenter,² C. J. Chiara,^{26,†} J. A. Clark,² H. L. Crawford,^{7,‡} M. Cromaz,⁵ H. M. David,^{2,§} C. Dickerson,² E. T. Gregor,^{8,9} J. Harker,^{2,6} C. R. Hoffman,² B. P. Kay,² F. G. Kondev,² A. Korichi,^{2,10} T. Lauritsen,² A. O. Macchiavelli,⁵ R. C. Pardo,² A. Richard,⁷ M. A. Riley,¹¹ G. Savard,² M. Scheck,⁸⁹ D. Seweryniak,² M. K. Smith,¹² R. Vondrasek,² and A. Wiens⁵ ¹Lawrence Livermore National Laboratory, Livermore, California 94550, USA ²Argonne National Laboratory, Argonne, Illinois 60439, USA ³University of Rochester, Rochester, New York 14627, USA ⁴University of Liverpool, Liverpool L69 7ZE, United Kingdom ⁵Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA ⁶University of Maryland, College Park, Maryland 20742, USA ¹Ohio University, Athens, Ohio 45701, USA ⁸University of the West of Scotland, Paisley PA1 2BE, United Kingdom ⁹SUPA, Scottish Universities Physics Alliance, Glasgow G12 800, United Kingdom ¹⁰CSNSM, IN2P3-CNRS, bâtiment 104-108, F-91405 Orsay Campus, France ¹¹Florida State University, Tallahassee, Florida 32306, USA ¹²University of Notre Dame, Notre Dame, Indiana 46556, USA (Received 5 October 2015; revised manuscript received 18 December 2015; published 17 March 2016)

Nuclear Inst. and Methods in Physics Research, A 1052 (2023) 168279

Full Length Article

49

Improving fast-timing time-walk calibration standards: Lifetime measurement of the 2^+_1 state in 152 Gd

L. Knafla^{*}, A. Harter, M. Ley, A. Esmaylzadeh, J.-M. Régis, D. Bittner, A. Blazhev, F. von Spee, J. Jolie

Universität zu Köln, Institut für Kernphysik, Zülpicher Str. 77, 50937 Köln, Germany

NUCLAR AMETIONS AMETIONS Profess RESERVON The Second Market Marke

Check for

week ending 14 APRIL 2017

PRL 118, 152504 (2017) PHYSICAL REV

PHYSICAL REVIEW LETTERS

week ending 14 APRIL 2017

Direct Evidence for Octupole Deformation in ¹⁴⁶Ba and the Origin of Large *E*1 Moment Variations in Reflection-Asymmetric Nuclei

B. Bucher,^{1,2,*} S. Zhu,^{3,†} C. Y. Wu,¹ R. V. F. Janssens,³ R. N. Bernard,⁴ L. M. Robledo,⁴ T. R. Rodríguez,⁴ D. Cline,⁵ A. B. Hayes,⁵ A. D. Ayangeakaa,³ M. Q. Buckner,¹ C. M. Campbell,⁶ M. P. Carpenter,³ J. A. Clark,³ H. L. Crawford,⁶ H. M. David,^{3,‡} C. Dickerson,³ J. Harker,^{3,7} C. R. Hoffman,³ B. P. Kay,³ F. G. Kondev,³ T. Lauritsen,³ A. O. Macchiavelli,⁶

R. C. Pardo,³ G. Savard,³ D. Seweryniak,³ and R. Vondrasek³
¹Lawrence Livermore National Laboratory, Livermore, California 94550, USA
²Idaho National Laboratory, Idaho Falis, Idaho 83415, USA
³Argonne National Laboratory, Idaho Falis, USA
⁴Departamento de Física Teórica, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
⁶University of Rochester, New York 14627, USA
⁶Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
⁷University of Maryland, College Park, Maryland 20742, USA
(Received 13 January 2017, published 12 April 2017)

PRL 118, 152504 (2017) PHYSICAL REVIEW LETTERS

Direct Evidence for Octupole Deformation in ¹⁴⁶Ba and the Origin of Large *E*1 Moment Variations in Reflection-Asymmetric Nuclei

 B. Bucher, ^{1,2,*} S. Zhu, ^{3,7} C. Y. Wu, ¹ R. V. F. Janssens, ³ R. N. Bernard, ⁴ L. M. Robledo, ⁴ T. R. Rodríguez, ⁴ D. Cline, ⁵ A. B. Hayes, ⁵ A. D. Ayangeakaa, ³ M. Q. Buckner, ¹ C. M. Campbell, ⁶ M. P. Carpenter, ³ J. A. Clark, ⁷ H. L. Crawford, ⁶ H. M. David, ^{3,4} C. Dickerson, ³ J. Harker, ^{3,7} C. R. Hoffman, ³ B. P. Kay, ³ F. G. Kondev, ³ T. Lauritsen, ³ A. O. Macchiavelli, ⁶ R. C. Pardo, ³ G. Savard, ³ D. Seweryniak, ³ and R. Vondrasek, ³ ¹Laverence Livermore National Laboratory, Livermore, California 94550, USA ²Idaho National Laboratory, Idaho Falik, Idaho 83415, USA ³Argonne National Laboratory, Rappene Illinois 60439, USA ⁴Departamento de Física Teórica, Universidad Autónoma de Madrid, E-28049 Madrid, Spain ⁵University of Rochester, Rochester, New York 14027, USA ⁶Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA ⁷University of Maryland, College Park, Maryland 20742, USA (Received 13 January 2017; published 12 April 2017)

Despite the more than 1 order of magnitude difference between the measured dipole moments in ¹⁴⁴Ba and ¹⁴⁶Ba, the octupole correlations in ¹⁴⁶Ba are found to be as strong as those in ¹⁴⁴Ba with a

similarly large value of $B(E3; 3^- \rightarrow 0^+)$ determined as $48({+21 \atop -29})$ W.u. The new results not only establish

unambiguously the presence of a region of octupole deformation centered on these neutron-rich Ba isotopes, but also manifest the dependence of the electric dipole moments on the occupancy of different neutron orbitals in nuclei with enhanced octupole strength, as revealed by fully microscopic calculations.

DOI: 10.1103/PhysRevLett.118.152504

¹⁴⁵Ba and ^{145,146}La structure from lifetime measurements

B. Olaizola ^{1,1} A. Babu, ¹ R. Umashankar, ^{1,2} A. B. Garnsworthy, ¹ G. C. Ball ^{0,1} V. Bildstein ³ M. Bowry, ^{1,5} C. Burbadge, ³ R. Cabellero-Folch ^{0,1} I. Dillmann, ^{1,4} A. Diaz-Varela, ³ R. Dunlop, ³ A. Estradé, ⁵ P. E. Garrett, ³ G. Hackman, ¹ A. D. MacLean ^{0,3} J. Measures, ^{1,6} C. J. Pearson, ¹ B. Shaw, ¹ D. Southall, ^{1,4} C. E. Svensson, ³ J. Turko, ³ K. Whitmore, ⁷ and T. Zidar ^{0,3} ¹ TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada ³Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 124, Canada ³Department of Physics, University of Striftsh Columbia, Vancouver, British Columbia V6T 124, Canada ³Department of Physics, University of Guelph, Guelph, Guelph, Ontario NIG 2WJ, Canada ³Department of Physics, Central Michigan University, Mount Pleasant, MIchigan 48859, USA ⁵Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom ³Department of Chemistry, Simon Fraser University, British Columbia V5A 156, Canada ⁵Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom ³Department of Chemistry, Simon Fraser University, British Columbia V5A 156, Canada ⁵Department of Chemistry, Simon Fraser University, British Columbia V5A 156, Canada ⁵Department of Chemistry, Simon Fraser University, British Columbia V5A 156, Canada ⁵Department of Chemistry, Simon Fraser University, British Columbia V5A 156, Canada ⁵Department of Chemistry, Simon Fraser University, British Columbia V5A 156, Canada ⁵Department of Chemistry, Simon Fraser University, British Columbia V5A 156, Canada ⁵Department of Chemistry, Simon Fraser University, Si

(Received 11 February 2021; revised 15 March 2021; accepted 10 August 2021; published 9 September 2021)

The occurrence of octupole shapes in even-mass neutron-rich Ba isotopes has been well established. However, the situation with the odd-mass Ba and odd or odd-odd La nuclei around them is not so clear. In order to shed light on these less-studied isotopes, a fast-timing experiment was performed using the GRIFTRN spectrometer at TRUMF-ISAC. A wealth of excited-state lifetimes in the 100 ps to few ns range have been measured in $\frac{1441.85.148}{14.186.146}$ panellated in the β^2 and $\frac{162}{14.146.5}$. The results do not allow one to draw firm conclusions about the possible occupole deformation of these nuclei but suggest different spin and parity assignments than previous works. This work highlights the need for more detailed study of the odd and odd-odd isotopes in this region to properly understand their structure.

DOI: 10.1103/PhysRevC.104.034307