Time-dependent wave-packet approach to '#C
+ 12C sub-barrier fusion using microscopic
potentials
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Introduction

Understanding the dynamics of the 12C + 12C
reaction is an important factor in determining the
path of stellar evolution, one that at low
astrophysical energies is not completely
explained.

Fusion cross sections of the 12C + 12C reaction
determine the nucleosynthesis of heavier ions in
carbon burning for stars with M > 8M,.

The Gamow peak for the 12C + 12C is
approximately 1.5 MeV. The Gamow window is
the energy range for a reaction in a stellar
burning phase where the Maxwell-Boltzmann
distribution of velocities overlaps with the low
energy tail of the reaction cross section.
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Nuclear Molecule States

* Direct measurements in the fusion cross
section have given insights down to the
center-of-mass energy, E_ . = 2.1 MeV, but
struggle to probe further due to
prominent Coulomb effects.

 Resonant structures in the fusion cross-
section have been observed in the sub-
barrier energy region, E_ < 6 MeV,

e These structure could be related to
collective excitation modes when at small
separation distances. ,

Figure from [2]



Time-dependent wave-packet (TDWP) method

W(R,04,k1,05,ky) = x(R)Y(64, k1,604, k
). Definition of the initial wave-packet, ¥(0). (R, 01, k1,02, k2) = X(R)Y (01, k1, 02, k7)

Sufficiently far away in their ground state (j"* =
0%).

2). Evolving the wave-packet in time by solving
the time-dependent Schrodinger equation.

3). After a sufficient amount of time, for the 2 >0¢
wave-packet to have finished interacting with
the potential wells, fusion probabilities and
cross-sections are calculated from the wave
function.




Example Simulation
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Time-dependent Hartree-Fock (TDHF) method

Sky3D - 3 dimensional TDHF code.

Skyrme energy density functional
calculation.

Binding energy per nucleon:
6.38 MeV, Experimental: 7.68 MeV N

Quadrupole Deformation:
f, =-0.22, Experimental: §, =-0.57

Sky3D publication [3]
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Density-constrained time-dependent Hartree-Fock (DC-TDHF)

Method

). Start a TDHF collision.

2). After a specified number of time steps, the reaction

IS paused to start a static HF calculation of the

dinuclear system. The density operators of the

nucleons are constrained to the values of the density §(H — z J drig(r)(pa(r) — pg”"F (1)) =0
operators during the TDHF procedure. q=pn

3). Calculate interaction potential by Vp-(R) =
EDC(R) _ El _ EZ'



Potential Energy (MeV)
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Resonance Peak and Cross-section
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Modified S*-factor
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Any Questions?
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Internal Wavefunction

W(R,01,kq,0;,ky) = x(R)Y(O4,kq,0,,k3)

Y(01, k1,02, k2)= [(j1,m1 (61, k1)§j2,m2 (62, k)
+ (=1) o —m2(01, k1)j1,-m1 (02, k2)]

/\/2 + 26j1,j20m1,—-m2




Kinetic Energy Operator

1
+m Gi-fo+ + f1-for +JU + 1) = 2kF — 2k1k; — 2k3)

c.(,K) = C_(J,K)
_ ,URZ (]1+ +]2+) - ,uRZ

(Ji- +J1-)

Controls the translational and

rotational movement of the nuclei
during the reaction. As well as the
reorientation and Coriolis effects.



Energy Projection
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