In-source Laser Spectroscopy Studies of Neutron-rich Mercury at ISOLDE

Josh Wilson – University of York

josh.wilson@york.ac.uk

Why Mercury?

- Nuclear structure
 - Provides a benchmark test for the shell model
 - Lots of nuclear structure physics
- Nuclear astrophysics
 - Nuclear properties are vital for the input into rapid neutroncapture process network calculations

 π

 ν

Known energies of first excited

Due to how hard this area of the isotopic chart is to reach experimentally there are very few well-known nuclear properties southeast of ²⁰⁸Pb

Previous measurements

- Charge radii measured up to ²⁰⁸Hg and magnetic dipoles to ²⁰⁷Hg
- Shell model calculations up to ²¹¹Hg by S. Sharma et al., arXiv:2309.07903 (2023). Who have agreed to do dedicated calculations for this data set
- Masses have been measured up to ²⁰⁸Hg masses beyond this are extrapolated from systematic trends causing large uncertainties

	<u> </u>			
	Lanzhou	GSI	ISOLDE	
²⁰⁸ Hg	41 ⁺⁵ ₋₄ min [1]	$132.2 \pm 50.0 \text{ s}$ [3]	135 ± 10 s [4]	
²⁰⁹ Hg	35 ⁺⁹ ₋₆ s [2]	6.3 ± 1.1 s [3]		
²¹⁰ Hg				

[1] L. Zhang *et al.*, CPL **14**, 507 (1997); [2] Zhang Li *et al.*, PRC **58**, 156 (1998);
[3] R. Caballero-Folch *et al.*, PRC **95**, 064322 (2017); [4] R. J. Carroll *et al.* PRL **125**, 192501 (2020).

Zhang Li *et al.*, PRC **58**, 156 (1998)

N. Al-Dahan et al., PRC 80, 061302(R) (2009)

PHYSICAL REVIEW LETTERS 125, 192501 (2020)

Competition between Allowed and First-Forbidden β Decay: The Case of $^{208}\text{Hg} \rightarrow ^{208}\text{Tl}$

R. J. Carroll,¹ Zs. Podolyáko^{1,2} T. Berry,¹ H. Grawe,³ T. Alexander,¹ A. N. Andreyev,^{4,22} S. Ansari,⁵ M. J. G. Borge,⁶ M. Brunet,¹ J. R. Creswell,⁷ L. M. Fraile,⁸ C. Fahlander,⁹ H. O. U. Fynbo,¹⁰ E. R. Gamba,¹¹ W. Gelletly,¹ R.-B. Gerst,⁵ M. Gradua,¹² D. Creadian,¹² D. Creadian,¹² D. Ludeon,⁷ D

Motivation for further measurements

Continuation of the campaign to map ground and isomeric state properties across the Pb region

Charge radii measurements help probe nucleon-nucleon interactions

Further charge radii points after the N = 126 kink

Magnetic moments provide direct information on single particle configurations of valence nucleons

Shell model predictions across the region need testing

- Magnetic moments provide a powerful testing tool
- Effective interactions used need data to be modified

Shell-model study on spectroscopic properties in the region "south" of ²⁰⁸Pb

Cenxi Yuan[©],^{1,*} Menglan Liu[©],¹ Noritaka Shimizu[©],² Zs. Podolyák[©],³ Toshio Suzuki[©],^{4,5} Takaharu Otsuka,^{6,7,8,9} and Zhong Liu[©]^{10,11}

Nothing is known!

Why have there been no previous measurements at ISOLDE?

Na

K

Rb

Cs

Fr

Large isobaric

contamination

Group 1 elements

are easily surface

ionized

Surface-ionised Francium has in-target production yields for A = 209 - 213 of $10^8 - 10^9$ atoms/µC). Whereas Mercury is orders of magnitude lower therefore the data is dominated by the Francium

Heated to ~2000 K

Laser spectroscopy
Hyperfine structure

$$\Delta \frac{E}{h} = \frac{K}{2}A + \frac{3K(K+1) - 4I(I+1)J(J+1)}{8I(2I-1)J(2J-1)}B$$

$$K = F(F+1) - I(I+1) - J(J+1)$$

$$A = \frac{\mu B_e}{I \cdot J}$$

 μ – Magnetic dipole moment

Provides information on the unpaired nucleons configuration

Oblate +ve Q_s - Spectroscopic electric quadrupole moment Allows the shape of the nucleus to be probed

9

- Composed of the Normal mass shift (NMS) and the Specific mass shift (SMS)
- NMS Describes the reduced electron mass of the system
- SMS Originates from correlation effects between any two electrons in multielectron systems

ISOLDE Decay Station

Made in York!

- A variety of chambers depending on the experiment
- Can utilize a variety of radiation detectors for gamma and particle spectroscopy
- York play a major role at IDS with Dr James Cubiss being the spokesperson and have made contributions to the setup such as chambers, gantries and the frame

Planned and proposed measurements

 Measurements that are \odot - Difficult measurements almost certain to be made that will be attempted

	Measurement		
Isotope	β-γ decay	Mass	IS + hfs
²⁰⁹ Hg	•	•	•
²¹⁰ Hg	•	•	•
²¹¹ Hg	•	0	0
²¹² Hg	0		

- y measurements made with 10 clovers at the implantation position and 2 at a secondary position
- β measurements will be conducted with an array of plastic scintillators
- Isotope shifts and hyperfine structure measurements made via RILIS for ^{209, 210}Hg and hopefully ²¹¹Hg

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

A York Led

experiment!

Proposal to the ISOLDE and Neutron Time-of-Flight Committee

Laser & decay spectroscopy and mass spectrometry of neutron-rich mercury isotopes south-east of ²⁰⁸Pb

10th January 2024

A. Algora¹, B. Andel², A. N. Andreyev³, S. Antalic², D. Balabanski⁴ M. Benhatchi⁵, J. Benito⁶ C. Bernerd⁷, K. Blaum⁸, J. A. Briz⁶, R. B. Cakirli⁹, K. Chrysalidis⁷, T. Cocolios¹⁰, J. G. Cubiss³ T. Day Goodacre¹¹, V. N. Fedosseev⁷, L. M. Fraile⁶, L. P. Gaffney¹², G. Georgiev⁵, P. F. Giesel¹³ K. Gladnishki¹⁴, R. Heinke⁷, Y. Hirayama¹⁵, A. Illana⁶, D. Kocheva¹⁴, U. Köster¹⁶, D. Lange⁸ R. Lica¹⁷, Yu. A. Litvinov¹⁸, D. Lunney⁵, B. A. Marsh⁷, A. McFarlane³, J. Mišt², A. Morales¹, M. Mukai¹⁹, S. Naimi⁵, L. Nies⁷, T. Niwase¹⁵, J. Ojala¹², B. Olaizola²⁰, C. Page³, R. D. Page¹², J. Pakarinen²¹, Z. Podolyak²², G. Rainovski¹⁴, M. Rosenbusch¹⁵, S. Rothe⁷, P. Schury¹⁵, Ch. Schweiger⁸, L. Schweikhard¹³, S. Sharma²³, A. Sitarčík², P. Srivastava²³, K. Stoychev⁷, M. Stryjczyk²¹, P. Van Duppen¹⁰, Y. Watanabe¹⁵, J. Wilson³, Z. Yue^{3,7} + IDS collaboration

¹IFC, CSIC, Valencia, Spain; ²Comenius University in Bratislava, Slovakia; ³University of York, UK *ELI-NP, Bucharest, Romania; 5CNRS/Université Paris-Saclay, France; 6Universidad Complutense de Madrid, Spain; 7CERN, Geneva, Switzerland; 8Max-Planck-Institute for Nuclear Physics Germany; 9Department of Physics, Istanbul University, Turkey; 10IKS, KU Leuven, Belgium ¹¹University of Manchester, UK; ¹²University of Liverpool, UK; ¹³Universität Greifswald, Germany ¹⁴Sophia University, Bulgaria; ¹⁵WNSC, IPNS, KEK, Japan; ¹⁶ILL, Grenoble, France; ¹⁷IFIN-HH Romania; 18GSI, Germany; 19RIKEN, Japan; 20IEM-CSIC, Madrid, Spain; 21JYFL, Jyvaskyla, Finland; 22University of Surrey, UK; 23Department of Physics, IIT, Roorkee.

Spokesperson: J. G. Cubiss [james.cubiss@york.ac.uk], D. Lange [daniel.lange@cern.ch] A. N. Andrevev [andrei.andrevev@vork.ac.uk], U. Köster [koester@ill.fr] Contact person: Ch. Schweiger [christoph.schweiger@cern.ch], Z. Yue [zixuan.yue@york.ac.uk]

Thank you!

josh.wilson@york.ac.uk

Laser Spectroscopy

- Model independent way to measure nuclear properties from the hyperfine structure and the isotope/isomer shift
- Two common methods at ISOLDE: In-source laser spectroscopy - High beam intensities - low resolution

Collinear spectroscopy

- High resolution
- Low beam intensities **<u>CRIS**</u>

Decay Station

X.F. Yang, S.J. Wang, S.G. Wilkins et al. Progress in Particle and Nuclear Physics 129 (2023) 104005

Motivation for further measurements

Nuclear Physics Motivations

- Competition between allowed and first forbidden β decays (may explain the ²⁰⁹Hg $T_{\underline{1}}$ discrepancy)
- Study trend in S_{2n} beyond N=126 in Z<82 region, use ΔS_{2n} to probe weakening of N=126 closure
- Explore interaction strength between last proton and neutron, δV_{pn}
- Further charge radii points after the N = 126 kink

Nuclear Astrophysics Motivations

- Derived mass excess important for restricting nuclear mass models - input for *r*-process network calculations.
- T_{1/2}, log *ft*, P_n place constraints on models used for *r*-process network calculations

Shell-model study for allowed and forbidden β^- decay properties in the "south" region of $^{208}\mathrm{Pb}$

S. Sharma,¹ P. C. Srivastava,^{1,*} A. Kumar,² T. Suzuki,^{3,4,5} C. Yuan,⁶ and N. Shimizu² ¹Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, India ²Center for Commutational Sciences. University of Tsukuba. 1-1-1 Tennodai. Tsukuba. Ibaraki 305-8577.

L. Chen,^{1,2} Yu. A. Litvinov,^{1,*} W. R. Plaß,^{1,2} K. Beckert,¹ P. Beller,¹ F. Bosch,¹ D. Boutin,² L. Caceres,¹ R. B. Cakirli,^{3,4}

