

Renjie Wu

Supervisor Prof. David Jenkins

Nat Pb neutron scattering cross section measurement & data analyze

renjie.wu@york.ac.uk

Why nuclear data

Nuclear Data Libraries

Nuclear Reactor Design

 Gen-IV detectors (Mainly fast reactors)

Fusion reactors development

renjie.wu@york.ac.uk

Fast neutron induced reaction cross-section

Inelastic scattering

 Fast neutron ~ several MeV (Kinetic energy loss)

• γ ~ 1-2MeV

Materials interested in

Material	lsotope	Gamma Energy 1 (MeV)	Gamma Energy 2 (MeV)	Gamma Energy 3 (MeV)	
Iron	56Fe	0.847	1.238	2.612	
Stainless Steel (Iron)	56Fe	0.847	1.238	2.612	
Stainless Steel (Nickel)	58Ni	1.454	1.608	2.311	
Stainless Steel (Chromium)	52Cr	1.434	2.306		
Nickel	58Ni	1.454	1.608	2.311	
Zirconium	90Zr	2.186	2.231		
Aluminum	27AI	0.843	1.014	1.779	
Titanium	48Ti	0.984	1.312	1.983	
Copper	63Cu	0.667	1.347	2.231	
Lead	208Pb	0.583	0.86	2.615	
Tungsten	184W	0.111	0.324	0.684	

Target choice

- No measurement in the past
- Super practical
- Achievable sample

Pure element

- Clear spectrum
- Easier with simulation & analysis (Maybe)

UNIVERSIT

Isotopes in SS

Iron

⁵⁴Fe ⁵⁶Fe ⁵⁷Fe ⁵⁸Fe

Chromium

⁵⁰Cr ⁵²Cr ⁵³Cr ⁵⁴Cr

Nickel

● ⁵⁸Ni ⁶⁰Ni ⁶¹Ni ⁶²Ni ⁶⁴Ni

Molybdenum

92Mo 94Mo 95Mo 96Mo 97Mo 98Mo 100Mo

Manganese

• ⁵⁵Mn

Cobalt

STFC nuclear physics summer school 2024

renjie.wu@york.ac.uk

Target choice

SS in nuclear structure

- No measurement in the past
- Super practical
- Achievable sample

Pure element

- Clear spectrum
- Easier with simulation & analysis (Maybe)

Accepted

renjie.wu@york.ac.uk

Why Pb important?

High priority in request

- Enhance the accuracy with which reactor integral parameters may be estimated
- Impact economic and safety margins

ID	Target	Reaction	Quantity	Energy range	Cov Field	Date
18H	92-U-238	(n,inl)	SIG	65 keV- 20 MeV	Y Fission	11-SEP-08
34H	26-FE-56	(n,inl)	SIG	$0.5 { m MeV}-20 { m MeV}$	Y Fission	12-SEP-08
41H	82-PB-206	(n,inl)	SIG	$0.5 { m MeV-6 MeV}$	Y Fission	15-SEP-08
42H	82-PB-207	(n,inl)	SIG	$0.5 { m MeV-6 MeV}$	Y Fission	15-SEP-08

Table 1: NEA Nuclear Data High Priority Request List, HPRL - (n,inl) [2]

GEN-IV & Breeder material

- Small Modular leadcooled reactor
- Lead-Cooled fast reactor
- Lead-lithium alloy as breeder material

n_ToF facility in CERN

High maximum flux
Narrow energy resolution
Large range of neutron energy From meV to GeV

$$E_n(\text{eV}) = \frac{1}{2}m_n v^2 = \left(\frac{72.2983 \cdot L(\text{m})}{t_{det}(\mu \text{s}) - t_{prod}(\mu \text{s})}\right)^2$$

Neutron Escape Line

EAR1

LaBr₃ & HPGe detectors

The Total Absorption Calorimeter (TAC)

EAR2

C6D6 & sTED detectors

EAR1 & EAR2

renjie.wu@york.ac.uk

First run in May – ²⁴Mg(n,inl)

Detectors tested:

2 X LaBr3 (Ce) INFN :

• PMT Hamamatsu R6231 readout with active voltage dividers

- 1.5" x 1.5", 1.5" x 2" crystals
- 2 X LaBr3 (Ce) University of Manchester(UoM):
- PMT Hamamatsu R6231 readout with passive VD
- 1.5" x 1.5" crystals

2 X LaBr3 (Ce) IFIN-HH:

- 1 gated PMT readout &1 gated SiPM readout
- 1.5" x 2" crystals HPGe Mirion
- Gated preamp

renjie.wu@york.ac.uk

Neutron inelastic cross section measurement

Thanks for your listening

Reference

Cross section and neutron angular distribution measurements of neutron scattering on natural iron https://doi.org/10.1103/PhysRevC.99.024601

Negret A, Borcea C, Dessagne P, Kerveno M, Olacel A, Plompen A, Stanoiu M. Cross-section measurements for the 56Fe(n, $xn\gamma$) reactions. PHYSICAL REVIEW C 90; 2014. p. 034602-1 - 034602-15. JRC91536

McConchie, Seth, et al. Assessment of modeling and nuclear data needs for active neutron interrogation. No. ORNL/TM-2021/1900. Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States), 2021.

 n_ToF collaboration. Measurement of the 238U(n, γ) cross section up to 80 keV with the Total Absorption Calorimeter at the CERN n_TOF facility, PHYSICAL REVIEW C, ISSN 2469-9985, 96, 2017, p. 064601, JRC110713.

Thanks to Nuclear Group & n-ToF collaboration

Backup

STFC nuclear physics summer school 2024

Effects

- Detector saturation
- Baseline shifts
- Dead time

How it generated

- Thought to come with neutron beam at first
- Then it is proved that it comes from decay of neutron pions

Gamma flash

Pb energy level

Pb-206

<u>https://www.nndc.bnl.gov</u>
 <u>/nudat3/getdataset.jsp?nu</u>
 <u>cleus=206Pb&unc=NDS</u>

Pb-204

 https://www.nndc.bnl.gov /nudat3/getdataset.jsp?nu cleus=204Pb&unc=NDS

Pb-207

<u>https://www.nndc.bnl.gov</u>
 <u>/nudat3/getdataset.jsp?nu</u>
 <u>cleus=207Pb&unc=NDS</u>

Pb-208

 https://www.nndc.bnl.gov /nudat3/getdataset.jsp?nu cleus=208Pb&unc=NDS

Research Plan

Detector development

Advanced LaBr3 detector with SiPM development By the end of 2024

Experiment design

Hand in the experiment proposal to CERN Before October of 2024

Simulation for experiment

Simulate the potential environment for the experiment

Experiment & Preliminary data analyse

Calibration – Background subtraction – pulse shape analyse – ... Expected during the running year of 2025

Data analyse

TBC

Current state of data

- IFIN-HH detector performs best smallest ringing and very little gain drift (if any).
- INFN detector has strongest drift, UoM has worst ringing.
- As would be expected, ringing is worse in dedicated vs parasitic pulses.

SMR – lead cooled

https://www.sckcen.be/en/expertises/nuclear-systems/leadcooled-fast-reactor-belgium/small-modular-reactor-smr