When EFT for new physics is not linear

Duarte Fontes Brookhaven National Laboratory

based on 2311.16897, with Sally Dawson, Carlos Quezada-Calonge and Juan José Sanz-Cillero

April 25th, 2024 LPC EFT Workshop, Notre Dame, IN

- Although the Standard Model (SM) is extremely powerful, there is physics beyond it (BSM)
- The Higgs sector was inaugurated in 2012, and BSM physics may be found within it
- How to search for BSM physics within the Higgs sector?
 - The dream: direct detection! But if BSM physics is too heavy to be produced, we resort to indirect methods, by looking for deviations from the SM in a model-independent way
 - A usual approach is the kappa formalism:

[David et al, 1209.0040] [Heinemeyer et al, 1307.1347]

A set of scale factors κ_i are defined, such that all decay channels and production x-section of the SM Higgs are rescaled by a κ_i^2 : $\frac{\sigma_{\text{ggH}}}{\sigma_{\text{ggH}}^{\text{SM}}} = \kappa_g^2$, $\frac{\Gamma\gamma\gamma}{\Gamma_{\gamma\gamma}^{\text{SM}}} = \kappa_{\gamma}^2$, $\frac{\Gamma f f}{\Gamma_{ff}^{\text{SM}}} = \kappa_f^2$,

- But the kappa formalism was explicitly proposed as an *interim solution*:
 - It deliberately ignores tensorial structures not present in the SM (so that it becomes model dependent and cannot be used for kinematic distributions)
 - It does not follow from a consistent Quantum Field Theory (so that it does not allow higher order, different scales, etc.)
 - It is not an Effective Field Theory (EFT)

 (so that it does not represent an IR limit of an UV sector)
 [Brivio, Trott, 1706.08945]
- The theoretical framework that should be used for a model-independent approach is an **EFT** $\mathcal{L}_{eff} = \mathcal{O}\left(\Lambda^{0}\right) + \frac{E}{\Lambda}\mathcal{O}_{1} + \left(\frac{E}{\Lambda}\right)^{2}\mathcal{O}_{2} + \left(\frac{E}{\Lambda}\right)^{3}\mathcal{O}_{3} + \dots$
 - Consistent Quantum Field Theory for heavy BSM, i.e., for small E/Λ
 - \ref{Model} At each order in E/Λ , all terms consistent with the symmetries are included
 - Renormalizable order by order; higher and higher orders become less and less relevant
 - It is a general description, that can later be matched to particular BSM models
 - Was not mature at LHC Run 1

 $\stackrel{\bullet}{\sim}$ Still, the organization of HEFT is subtle, since χ PT and SMEFT have different organizations

 With the matching, we would convert a constraint on an EFT coefficient into a constraint on the parameters of the BSM models (all at once):

For $C_{\text{Hq}}^{(1)} \simeq -0.24$, then: BSM1: $\sin(\alpha) \simeq -0.12$, BSM2: $\cos(\beta) \simeq -0.06$, ...

- The EFT, then, is just a tool, and never the ultimate answer
- The matching is thus a crucial part of the EFT framework (without it, the EFT is in vain!)
- Even without non-zero EFT coefficients, we should understand how matching works

2HDM

- Understanding matching:
 - Recipe:
 - 1. Choose a set of independent parameters in the full theory
 - 2. Define a small quantity (ξ) to organize the to-be-built **EFT** expansion
 - 3. Decide how each of the independent parameters scales with ξ
 - 4. Equate specific amplitudes in the full theory and **EFT** order by order in ξ
 - If we knew the values of the parameters, we would know how to scale them e.g. $\sin(\alpha) \sim \mathcal{O}(\xi^0)$
 - But since we do not, we may consider multiple possibilities $\sin(\alpha) \sim \mathcal{O}(\xi^0)$ or $\sim \mathcal{O}(\xi^1)$ or ...
 - Each possibility will lead to different expansions or power countings (PCs)
- I will consider two particular BSM models to be matched to the HEFT:
 - The real singlet extension of the SM with a Z2 symmetry (Z2RSE)
 - The 2 Higgs Doublet Model (2HDM)
 (and we will only consider regions allowed by theoretical and experimental constraints)
- For each of them, we will consider 3 different PCs, which differ in how they scale the parameters
 (one of them will correspond to the SMEFT one)
- The goal is to find the best PC the fastest to converge to the BSM model

	Motivation	Z2RSE	2HDM	Discussion
۲	Since one of the PC	Cs is SMEFT-like, we can c	heck if/when linear terms in	$rac{1}{\Lambda^2}$ are enough
	• In that PC, $\frac{1}{\Lambda}$	$\frac{1}{2}$ corresponds to $\mathcal{O}(\xi^1)$, $\frac{1}{2}$	$rac{1}{\Lambda^4}$ corresponds to $\mathcal{O}(\xi^2)$,	
	• For $\mathcal{A}\propto$	$a_0 g_{\rm SM} + a_1 \frac{C^{(6)}}{\Lambda^2} + a_2 \frac{C^{(8)}}{\Lambda^4} +$, it follows:	
	$\sigma \propto$	$ a_0 g_{\rm SM} ^2 + \frac{2}{\Lambda^2} {\rm Re}[a_0 a_1 g_{\rm SM} C]$	$C^{(6)}] + \frac{1}{\Lambda^4} \Big\{ a_1 C^{(6)} ^2 + 2 \operatorname{Re}[a_0] \Big\}$	$a_2 g_{\rm SM} C^{(8)}] \Big\} + \dots$
		$\mathcal{O}(\xi^1)$	$\mathcal{O}(\xi^2)$	

- The Z2RSE in a nutshell:
 - Add a scalar singlet S to the SM, subject to a Z2 symmetry: $S \rightarrow -S$. The potential reads:

$$V = -\frac{\mu_1^2}{2}\phi^{\dagger}\phi - \frac{\mu_2^2}{2}S^2 + \frac{\lambda_1}{4}\left(\phi^{\dagger}\phi\right)^2 + \frac{\lambda_2}{4}S^4 + \frac{\lambda_3}{2}\phi^{\dagger}\phi S^2$$

• The parameters $\mu_1^2, \mu_2^2, \lambda_1, \lambda_2, \lambda_3$ are all real, and the fields can be written as:

$$\phi = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}} (v + h_1 + iG_0) \end{pmatrix}, \quad S = \frac{v_s + h_2}{\sqrt{2}}$$

ullet h_1,h_2 are not yet mass states; they can be diagonalized via a mixing angle χ

$$\left(\begin{array}{c}h\\H\end{array}\right) = \left(\begin{array}{cc}c_{\chi} & -s_{\chi}\\s_{\chi} & c_{\chi}\end{array}\right) \left(\begin{array}{c}h_{1}\\h_{2}\end{array}\right)$$

• The fields h, H are then mass states, with masses m, M, respectively

• We can use the relations of the theory to choose two different sets of indep. parameters:

SET_R1:
$$v, m, v_s, M, s_{\chi}$$

• Set_R2: $v, m, \mu_2^2, M, s_{\chi}$

2HDM

For a HEFT approach, we assume $M \gg m$, so that we integrate out H

• It is then clear that m/M should be small — say, $\left(\frac{m}{M}\right)^2 \sim \mathcal{O}(\xi)$

Z2RSE

• But what about the other parameters? We consider 3 PCs: $\mathcal{O}(\xi^1) \leftrightarrow \Lambda^{-2}, \quad \mathcal{O}(\xi^2) \leftrightarrow \Lambda^{-4}, \dots$

• $\operatorname{PC}_{1}^{\mathrm{R}}$ takes SET_R1 as the set of independent parameters, and imposes: $\left(\frac{m}{M}\right)^{2} \sim \mathcal{O}(\xi), \quad \left(\frac{m}{v_{s}}\right)^{2} \sim \mathcal{O}(\xi), \quad s_{\chi}^{2} \sim \mathcal{O}(\xi) \quad \text{(and all the others are } \mathcal{O}(\xi^{0}))$

• PC_2^R takes SET_R1 as the set of independent parameters, and imposes:

$$\left(\frac{m}{M}\right)^2 \sim \mathcal{O}(\xi)$$
 (and all the others are $\mathcal{O}(\xi^0)$)

• PC_3^R takes SET_R2 as the set of independent parameters, and imposes:

$$\left(\frac{m}{M}\right)^2 \sim \mathcal{O}(\xi)$$
 (and all the others are $\mathcal{O}(\xi^0)$)

• Example of matching for $\mathcal{L}_{\text{HEFT}} \ni -\kappa_3 m_h^2 \frac{h^3}{2v}$. Defining $\Delta \kappa_3 \equiv \kappa_3 - 1$, we find:

04/25/2024

Duarte Fontes

Numerical results for the differential cross section of $hh \rightarrow hh$:

Z2RSE

- Close to $s_{\chi} = 0$, everything works. Elsewhere, there are significant differences
- In particular, even if PC_2^R and PC_3^R only differ by μ_2^2 vs. v_s , PC_2^R is much more accurate
- PC_2^R is the best (quickest to converge) PC, for the entire range of s_{χ}
- SMEFT at Λ^{-2} is not enough: one needs to go beyond a linear term in Λ^{-2}
- In the right panel, the EFT assumption starts to break down

Numerical results for the differential cross section of $WW \rightarrow hh$:

Similar conclusions in a different process

 \circ Clearly, then, even if there are several PCs, PC_2^R is the way to go

(will this also be the case in the 2HDM?)

- Now, the 2HDM. The model in a nutshell:
 - Add a second Higgs doublet to the SM. This leads to:

$$\mathcal{L}_{\rm 2HDM} \ni -V + \mathcal{L}_Y,$$

$$\begin{split} V &= Y_1 H_1^{\dagger} H_1 + Y_2 H_2^{\dagger} H_2 + \left(Y_3 H_1^{\dagger} H_2 + \text{h.c.} \right) + \frac{Z_1}{2} \left(H_1^{\dagger} H_1 \right)^2 + \frac{Z_2}{2} \left(H_2^{\dagger} H_2 \right)^2 + Z_3 \left(H_1^{\dagger} H_1 \right) \left(H_2^{\dagger} H_2 \right) \\ &+ Z_4 \left(H_1^{\dagger} H_2 \right) \left(H_2^{\dagger} H_1 \right) + \left\{ \frac{Z_5}{2} \left(H_1^{\dagger} H_2 \right)^2 + Z_6 \left(H_1^{\dagger} H_1 \right) \left(H_1^{\dagger} H_2 \right) + Z_7 \left(H_2^{\dagger} H_2 \right) \left(H_1^{\dagger} H_2 \right) + \text{h.c.} \right\}, \end{split}$$

$$\mathcal{L}_{Y} = -\lambda_{u}^{(1)} H_{1}^{\dagger} \hat{q}_{L} u_{R} - \lambda_{u}^{(2)} H_{2}^{\dagger} \hat{q}_{L} u_{R} - \lambda_{d}^{(1)} \bar{d}_{R} H_{1}^{\dagger} q_{L} - \lambda_{d}^{(2)} \bar{d}_{R} H_{2}^{\dagger} q_{L} - \lambda_{l}^{(1)} \bar{e}_{R} H_{1}^{\dagger} l_{L} - \lambda_{l}^{(2)} \bar{e}_{R} H_{2}^{\dagger} l_{L} + \text{h.c.} \quad \left(\hat{q}_{L} \equiv -i\sigma_{2}(\bar{q}_{L})^{\mathrm{T}} \right)^{\mathrm{T}} \hat{d}_{R} H_{1}^{\dagger} q_{L} - \lambda_{d}^{(2)} \bar{d}_{R} H_{2}^{\dagger} q_{L} - \lambda_{l}^{(1)} \bar{e}_{R} H_{1}^{\dagger} l_{L} - \lambda_{l}^{(2)} \bar{e}_{R} H_{2}^{\dagger} l_{L} + \text{h.c.} \quad \left(\hat{q}_{L} \equiv -i\sigma_{2}(\bar{q}_{L})^{\mathrm{T}} \right)^{\mathrm{T}} \hat{d}_{R} H_{1}^{\dagger} q_{L} - \lambda_{d}^{(1)} \bar{d}_{R} H_{2}^{\dagger} q_{L} - \lambda_{d}^{(1)} \bar{e}_{R} H_{1}^{\dagger} l_{L} - \lambda_{l}^{(2)} \bar{e}_{R} H_{2}^{\dagger} l_{L} + \text{h.c.} \quad \left(\hat{q}_{L} \equiv -i\sigma_{2}(\bar{q}_{L})^{\mathrm{T}} \right)^{\mathrm{T}} \hat{d}_{R} H_{1}^{\dagger} q_{L} - \lambda_{d}^{(1)} \bar{d}_{R} H_{2}^{\dagger} q_{L} - \lambda_{d}^{(1)} \bar{e}_{R} H_{1}^{\dagger} l_{L} - \lambda_{l}^{(2)} \bar{e}_{R} H_{2}^{\dagger} l_{L} + \text{h.c.} \quad \left(\hat{q}_{L} \equiv -i\sigma_{2}(\bar{q}_{L})^{\mathrm{T}} \right)^{\mathrm{T}} \hat{d}_{R} H_{1}^{\dagger} q_{L} - \lambda_{d}^{(1)} \bar{d}_{R} H_{1}^{\dagger} q_{L} - \lambda_{d}^{(2)} \bar{d}_{R} H_{2}^{\dagger} q_{L} + \text{h.c.} \quad \left(\hat{q}_{L} \equiv -i\sigma_{2}(\bar{q}_{L})^{\mathrm{T}} \right)^{\mathrm{T}} \hat{d}_{R} H_{1}^{\dagger} q_{L} - \lambda_{d}^{(1)} \bar{d}_{R} H_{2}^{\dagger} q_{L} + h.c.$$

where Y_i , Z_j and λ_z are real parameters, and where the doublets can be written as:

$$H_1 = \begin{pmatrix} G^+ & H^+ \\ \frac{1}{\sqrt{2}} \left(v + s_{\beta - \alpha} h + c_{\beta - \alpha} H + iG_0 \right) \end{pmatrix}, \qquad H_2 = \begin{pmatrix} H^+ & H^+ \\ \frac{1}{\sqrt{2}} \left(c_{\beta - \alpha} h - s_{\beta - \alpha} H + iA \right) \end{pmatrix}$$

with h the scalar found at the LHC, while H, A, H^+ are BSM scalars, assumed to be heavy

- Avoid FCNC via a Z_2 symmetry \blacksquare 4 types of 2HDM: Type-I, Type-II, Type-L, Type-F
- Take some of the parameters as independent:
 - SET_T1: $c_{\beta-\alpha}, Y_2, m_h, m_H, m_A, m_{H^{\pm}}, \beta, m_f$
 - SET_T2: $c_{\beta-\alpha}, m_{12}^2, m_h, m_H, m_A, m_{H^{\pm}}, \beta, m_f$

Motivation	Z2RSE	2HDM	Discussion
Let us consider th	e degenerate case, and de	ine $M \equiv m_H = m_A =$	$m_{H^{\pm}}$
• The PCs to be stu	died are: (dimensional terms a	re normalized to m_h)	corresponds to the SMEFT : $\mathcal{O}(\xi^1) \leftrightarrow \Lambda^{-2}, \mathcal{O}(\xi^2) \leftrightarrow \Lambda^{-4},$
\bullet PC_1^T takes S	ET_T1 as the set of indepe	ndent parameters, and i	mposes:
$Y_2 \sim$	$\mathcal{O}(\xi^{-1}), \qquad M^2 = Y_2 + $	$\mathcal{O}(\xi^0) \sim \mathcal{O}(\xi^{-1}), \qquad c$	$_{eta-lpha}\sim \mathcal{O}(\xi)$ (and all the others are $\mathcal{O}(\xi^0)$)
• PC_2^T takes S	ET_T1 as the set of indepe	ndent parameters, and i	mposes:
	$Y_2 \sim \mathcal{O}(\xi^{-2}), \qquad M^2 < 0$	$\sim \mathcal{O}(\xi^{-2}), \qquad c_{\beta-\alpha} \sim$	$\mathcal{O}(\xi)$
• PC_3^T takes S	ET_T2 as the set of indepe	ndent <mark>parameters</mark> , and i	(and all the others are $\mathcal{O}(\xi^0)$) mposes:
	M^2 c	$\sim \mathcal{O}(\xi^{-1})$	
Example:			(and all the others are $\mathcal{O}(\xi^0)$)
$\mathrm{PC}_{1}^{\mathrm{T}}$	PC_2^T		PC_3^T
$-\xi 2c_{\beta-\alpha}^2 \frac{Y_2}{m_1^2} + \xi^2 \frac{1}{2}c_{\beta-\alpha}^2$	$-\frac{2Y_{2}c_{\beta-\alpha}^{2}}{m_{h}^{2}} + \xi \frac{c_{\beta-\alpha}^{3}}{m_{h}^{2}t_{\beta}}(t_{\beta}^{2}-1)(Y_{2})$	$(-M^2)$ -1	$1 + s_{\beta-\alpha}(1 + 2c_{\beta-\alpha}^2) + c_{\beta-\alpha}^2 \Big[-2s_{\beta-\alpha}r \Big]$
h 2	$+\xi^2 \frac{c_{\beta-\alpha}}{2m_h^2 t_\beta^2} \bigg(c_{\beta-\alpha}^2 \bigg[M^2 (t_\beta^4 - 4t_\beta^2 $	$(+1) + 2Y_2 t_\beta^2 + m_h^2 t_\beta^2 + 2$	$c_{eta-lpha}\cot 2etaig(1-m_{12}^2)\Big]$

What happens in different regions of parameter space of a certain process?

Z2RSE

- In these cases, Y_2 starts to diminuish; we thus expect PC_1^T and PC_2^T to fail
- PC_1^T indeed fails. However, in PC_2^T , the scaling of M^2 partially compensates that
- Whereas PC_2^T is still the most adequate PC in the left plot, PC_3^T passes it in the right one
- In sum: the most adequate PC depends not only on the process, but also on the region

What happens in loop processes?

- In both cases, the SM is not obtained in the 2HDM when $c_{\beta-\alpha} = 0$ (as the charged Higgs contributions are generally non-zero in that limit)
- PC_1^T at $\mathcal{O}(\xi^1)$ (SMEFT Λ^{-2}) is a reasonable description

(even though it only has a linear dependence on $c_{\beta-lpha}$)

- PC_3^T is quite deviated at $\mathcal{O}(\xi^0)$, but provides an excellent replication of the 2HDM at $\mathcal{O}(\xi^1)$
- \bullet PC_2^T is not as accurate

- EFTs are a consistent and general approach to BSM models
- Yet, they are but a tool, that requires matching the EFT coefficients to particular BSM models
- The matching is built based on assumptions about the size of the parameters of the model
- Since we do not know the sizes, we can consider multiple possibilities or power countings (PCs)
- I considered the HEFT, and discussed its matchings of both of the Z2RSE and the 2HDM
- In both cases, we presented three different PCs leading to three different matchings one of them corresponding to the SMEFT
 (the HEFT matching is not unique!)
- In both cases, we found cases where SMEFT with linear terms in Λ^{-2} is not enough
- In the Z2RSE, one of the PCs was always preferred
- In the 2HDM, by contrast, the most adequate PC depended on the process and region
- This complicates the interpretation of HEFT coefficients in terms of parameters of UV models