Higgs & STXS

Jon Langford

LPC EFT Workshop

IMPERIAL Imperial-X

Introduction

2

● Since 2012 we have entered precision era of Higgs boson measurements

[Nature 607, 60-68 \(2022\)](https://www.nature.com/articles/s41586-022-04892-x)

Simplified Template Cross Sections (STXS)

Split events first by production mode, then by kinematics

Measure cross section in each region (bin) \rightarrow Develop granular description of Higgs boson production

Simplified Template Cross Sections (STXS)

Split events first by production mode, then by kinematics

4

Measure cross section in each region (bin) \rightarrow Develop granular description of Higgs boson production

Simplified Template Cross Sections (STXS)

Split events first by production mode, then by kinematics

Measure cross section in each region (bin) \rightarrow Develop granular description of Higgs boson production

STXS (stage 1.2)

6

- Common scheme across decay channels (eases combination)
	- Systematically reduce theory dependence in measurements
-
- Framework for BSM interpretations (e.g. SMEFT)

STXS measurements

Both **CMS** & ATLAS have performed STXS measurements in major Higgs boson decay channels e.g.

7

STXS combinations

● Common scheme enables combinations where we achieve ultimate sensitivity

Stay tuned for
Stay tuned for Stay tuned ¹⁰¹
CMS Legacy Run 2 *combination*

SMEFT interpretation

- **●** STXS provides a useful framework for BSM interpretations e.g. SMEFT
	- Use kinematic information for stronger constraints
- Three types of SMEFT fits:

SMEFT interpretation

- **●** STXS provides a useful framework for BSM interpretations e.g. SMEFT
	- Use kinematic information for stronger constraints
- Three types of SMEFT fits:

od using measured cross predictions (signal strengths, μ) ence intervals + correlations

experiments rengths in likelihood in terms of ients

 m ised to EFT model \rightarrow Reinterpretable

set of operators

signal yields and shapes in terms fficients

ects through detector

EFT model

dful of operators

SMEFT interpretation

- **●** STXS provides a useful framework for BSM interpretations e.g. SMEFT
	- Use kinematic information for stronger constraints
- Three types of SMEFT fits:

SMEFT reinterpretation of unfolded diff XS measurements

$$
\mathcal{L}(\text{data}|\vec{c}) = \frac{\exp(-\frac{1}{2}\Delta\vec{\mu}(\vec{c})^{\text{T}}V^{-1}\Delta\vec{\mu}(\vec{c}))}{\sqrt{(2\pi)^m \det(V)}}
$$
 e Build simplified likelihoods in the solution. Substituting the values of the solution. Substituting the values of the solution, we find $\cos\theta$ is a constant.

SMEFT interpretation using full (reco-level) likelihood

SMEFT direct analysis

1

$$
\mathcal{L}\left(\text{data}\left|\right.\vec{c},\vec{\theta}\right)=\prod_{i}\text{Poisson}\left(n_{i}\left|\right.\sum_{j}\mu^{j}(\vec{c})s_{i}^{j}(\vec{\theta})+b_{i}(\vec{\theta})\right)p\left(\tilde{\vec{\theta}}\left|\right.\vec{\theta}\right)
$$

$$
\mathcal{L}(\text{data} | \vec{c}, \vec{\theta}) = \prod_{i} \text{Poisson}(n_i | \sum_{j} s_i^j(\vec{c}, \vec{\theta}) + b_i(\vec{\theta})) p(\tilde{\vec{\theta}} | \vec{\theta})
$$

3

● "Theorists" approach

- Propagate SMEFT effects through detector
- Analysis optimised to EFT model
- Great sensitivity to handful of operators

SM

bod using measured cross l predictions (signal strengths, μ) ence intervals + correlations

Performed in-house by experiments Parameterise signal strengths in likelihood in terms of SMEFT Wilson coefficients Analysis not fixed/optimised to EFT model \rightarrow Reinterpretable Fair sensitivity to wide set of operators

> signal yields and shapes in terms fficients

STXS approaches

STXS-SMEFT parametrisation

Key quantity to derive:

$$
\mu^{i,f}(\vec{c}) = \frac{[\sigma^i \cdot \mathcal{B}^f](\vec{c})}{[\sigma^i \cdot \mathcal{B}^f]_{\text{SM}}}
$$

i = STXS bin, f = Higgs boson decay channel

- Parameterise Higgs boson cross sections (STXS) and decay widths as functions of SMEFT Wilson coefficients
- Full details in [talk by Charlotte later.](https://indico.cern.ch/event/1378665/contributions/5901963/) Key assumptions:

 $\mathcal{L}\left(\text{data}\left|\vec{c}\right.\right)=\frac{\exp\left(-\frac{1}{2}\Delta\vec{\mu}(\vec{c})^{\text{T}}V^{-1}\Delta\vec{\mu}(\vec{c})\right)}{\sqrt{(2\pi)^{m}\det(V)}}$

 $\mathcal{L}(\text{data} | \vec{c}, \vec{\theta}) = \prod_i \text{Poisson}(n_i \mid \sum_j \mu^j(\vec{c}) s_i^j(\vec{\theta}) + b_i(\vec{\theta})) p(\tilde{\vec{\theta}} | \vec{\theta})$
2

STXS-SMEFT parametrisation

Key quantity to derive:

$$
\mu^{i,f}(\vec{c}) = \frac{[\sigma^i \cdot \mathcal{B}^f](\vec{c})}{[\sigma^i \cdot \mathcal{B}^f]_{\text{SM}}}
$$

$$
\sigma_{\text{SMEFT}}^{i} = \sigma_{\text{SM}}^{i,(\text{(N)N)NLO}} \times \left(1 + \frac{\sigma_{\text{int}}^{i,(\text{N)LO}}}{\sigma_{\text{SM}}^{i,(\text{N)LO}}} + \frac{\sigma_{\text{BSM}}^{i,(\text{N)LO}}}{\sigma_{\text{SM}}^{i,(\text{N)LO}}}\right)
$$
 13

 $\mathcal{L}\left(\text{data}\left|\vec{c}\right.\right)=\frac{\exp\left(-\frac{1}{2}\Delta\vec{\mu}(\vec{c})^{\text{T}}V^{-1}\Delta\vec{\mu}(\vec{c})\right)}{\sqrt{(2\pi)^{m}\det(V)}}$

 $\sum_{i} \mu^{j}(\vec{c})s_{i}^{j}(\vec{\theta})+b_{i}(\vec{\theta})\big)\,p\big(\tilde{\vec{\theta}}\,\big|\,\vec{\theta}\big)$

2

i = STXS bin, f = Higgs boson decay channel

Parameterise Higgs boson cross sections (STXS) and decay widths as functions of SMEFT Wilson coefficients

- Full details in [talk by Charlotte later.](https://indico.cern.ch/event/1378665/contributions/5901963/) Key assumptions:
	- **1. Single insertions of (CP-even) dim-6 operators**
		- Cross sections, partial widths and total width have quadratic dependence
		- Use combination of Monte-Carlo tools and analytic solutions to obtain Aj, Bj
	- **2. Higgs boson narrow-width assumption**
		- Total scaling is product of production and decay-side scaling functions
	- **3. EFT effects factorise from higher-order QCD/QED contributions**

$$
\mathcal{L}\left(\text{data} \mid \vec{c}, \vec{\theta}\right) = \prod_{i} \text{Poisson}\left(n_i \mid \sum_{j} \vec{c}_{ij} \right)
$$

$$
\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{j} \frac{C_j}{\Lambda^2} \cdot \mathcal{O}_j^{(6)}
$$
\n
$$
\mu = O^{\text{EFT}} / O^{\text{SM}} = 1 + \sum_{j} A_j c_j + \sum_{jk} B_{jk} c_j c_k
$$
\n
$$
\frac{A_j^i c_j + \sum_{jk} B_{jk}^i c_j c_k) \cdot (1 + \sum_{i} A_j^f c_j + \sum_{jk} B_{jk}^f c_j c_k}{1 + \sum_{i} A_j^{\text{tot}} c_j + \sum_{jk} B_{jk}^{\text{tot}} c_j c_k}
$$

$$
\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{j} \frac{C_j}{\Lambda^2} \cdot \mathcal{O}_j^{(6)}
$$
\n
$$
\mu = O^{\text{EFT}} / O^{\text{SM}} = 1 + \sum_{j} A_j c_j + \sum_{jk} B_{jk} c_j c_k
$$
\n
$$
\frac{V_j c_j + \sum_{jk} B_{jk}^i c_j c_k \cdot (1 + \sum_{i} A_j^f c_j + \sum_{jk} B_{jk}^f c_j c_k)}{1 + \sum_{i} A_j^{\text{tot}} c_j + \sum_{jk} B_{jk}^{\text{tot}} c_j c_k}
$$

$$
\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{j} \frac{C_j}{\Lambda^2} \cdot \mathcal{O}_j^{(6)}
$$
\n
$$
\mu = O^{\text{EFT}} / O^{\text{SM}} = 1 + \sum_{j} A_j c_j + \sum_{jk} B_{jk} c_j c_k
$$
\n
$$
\mu_i^f = \frac{(1 + \sum_{i} A_j^i c_j + \sum_{jk} B_{jk}^i c_j c_k) \cdot (1 + \sum_{i} A_j^f c_j + \sum_{jk} B_{jk}^f c_j c_k)}{1 + \sum_{i} A_j^{\text{tot}} c_j + \sum_{jk} B_{jk}^{\text{tot}} c_j c_k}
$$

STXS-SMEFT derivation

- **Task:** determine Aj, Bjk coefficients for each STXS bin + decay widths
- [EFT2Obs tool](https://github.com/ajgilbert/EFT2Obs): used to derive quadratic parametrisation at STXS stage 1.2 granularity in Warsaw basis
	- All CP-even dim-6 operators under topU3l flavour symmetry
	- {GF, MZ, MW} input parameter scheme
	- \circ Events generated with Madgraph (v2.6.7) \to showered with Pythia \to Categorised into STXS bins using Rivet routine
	- Reweight events to different points in SMEFT parameter space to extract cross section dependence
- ggH + ggZH derived using SMEFT@NLO (loop processes)
	- Translated to topU3l Warsaw basis using SMEFTsim manual
- EW Higgs production modes at LO with SMEFTsim v3: VBF, VH, ttH, tH, bbH
	- Propagator corrections included
- Higgs decay using mixture of SMEFTsim and analytic results
	- \circ Total width = weighted sum of partial widths (validated using analytic linear result)

STXS-SMEFT parametrisation

PCA rotation

- STXS cannot simultaneously constrain O(40) CP-even operators relevant to Higgs physics
	- Large degeneracies/correlations between Wilson coefficients
- **Principal component analysis** on Fisher Information matrix → find constrained (+ unconstrained) directions in parameter

$$
\mathsf{c}_{\text{SMEFT}}^{-1} = \mathsf{P}^{\mathsf{T}} \mathsf{C}_{\text{STXS}}^{-1} \mathsf{P}
$$

Fisher-information (Hessian) of STXS measurements

$$
P_{ij}^f = A_j^{i \to H} + A_j^{H \to f} - A_j^{\rm tot}
$$

Rotation using **linearised** SMEFT model Eigenvector decomposition

Derived using CMS Run 2 $H\rightarrow \gamma\gamma$ STXS workspace

 C_{SMEFT}^{-1} : $(C_{\text{SMEFT}}^{-1} - \lambda_m I)$ EV_m = 0

PCA rotation

- STXS cannot simultaneously constrain O(40) CP-even operators relevant to Higgs physics
	- Large degeneracies/correlations between Wilson coefficients
- **Principal component analysis** on Fisher Information matrix → find constrained (+ unconstrained) directions in parameter

$$
\mathsf{S} \mathsf{K} \ \mathsf{C}_{\mathrm{SMEFT}}^{-1} = \mathsf{P}^{\mathsf{T}} \mathsf{C}_{\mathrm{STXS}}^{-1} \mathsf{P}
$$

Fisher-information (Hessian) of STXS measurements

EV = linear combinations of Wilson Coefficients

Uncertainty in direction EV is \sim 1/sqrt(λ)

Introduce cut-off, below which EVs are fixed to zero in fit (no loss in generality)

$$
P_{ij}^f = A_j^{i \to H} + A_j^{H \to f} - A_j^{\rm tot}
$$

Rotation using **linearised** SMEFT model Eigenvector decomposition

Derived using CMS Run 2 $H\rightarrow \gamma\gamma$ STXS workspace

 C_{SMEFT}^{-1} : $(C_{\text{SMEFT}}^{-1} - \lambda_m I)$ EV_m = 0

PCA rotation

ATLAS prefer block diagonal approach to "maintain level of interpretability"

- How truly interpretable are these parameters? How can we compare results (e.g. CMS vs ATLAS) using different rotated bases?
	- Put more emphasis on UV matching: compare constraints on true physical parameters using benchmark models?
	- Define common (fixed) basis to be used across experiments: suboptimal choice with different inputs?

Extraction of results

STXS-SMEFT Higgs combination fits with full likelihood are a technical challenge

2

 $\mathcal{L}(\text{data}|\vec{c}, \vec{\theta}) = \prod \text{Poisson}(n_i \mid \sum \mu^{j}(\vec{c})s_i^{j}(\vec{\theta}) + b_i(\vec{\theta})) p(\tilde{\vec{\theta}} | \vec{\theta})$

Pitfalls of STXS

● So STXS is a great framework for SMEFT?

Pitfalls of STXS

- So STXS is a great framework for SMEFT?
- There are a number of caveats...

- 1. Acceptance effects (no fiducial selection on Higgs decay products)
- 2. Suboptimal STXS binning
- 3. Selection effects (within-bin SMEFT variations)
- 4. Shape effects

Pitfalls of STXS

- So STXS is a great framework for SMEFT?
- There are a number of caveats...

-
-
-

Acceptance corrections

- EFT dependence in experimental phase space **≠** EFT dependence in inclusive phase space
	- EFT effects can depend on analysis acceptance/selection
	- Exacerbated by fact that STXS has **no fiducial selection on Higgs boson decay products**

Acceptance corrections

- EFT dependence in experimental phase space [≠] EFT dependence in inclusive phase space
	- EFT effects can depend on analysis acceptance/selection
	- Exacerbated by fact that STXS has **no fiducial selection on Higgs boson decay products**
- Problem for Higgs four-body decays e.g. $H \rightarrow ZZ^* \rightarrow 4l$ \longrightarrow
	- \circ Analysis places cut on invariant mass of subleading lepton pair: $m_{72} > 12$ GeV
	- \circ Removes phase space with largest EFT effects \rightarrow washes out the dependence in this channel

 $c_{HWB}^2 \times 10$

We add corrections to model EFT dependence in experimental phase space Useful to introduce some fiducial-like selection in STXS definition?

Suboptimal binning

- Analyses are designed/optimised to measure STXS cross sections and **not SMEFT parameters**
- Binning design reflects our "SM sensitivity"
- Gain SMEFT sensitivity by additional splittings (particularly at high pT) or redesign with different variables (STXS 1.3?)

Suboptimal binning

- Analyses are designed/optimised to measure STXS cross sections and **not SMEFT parameters**
- Binning design reflects our "SM sensitivity"
- Gain SMEFT sensitivity by additional splittings (particularly at high pT) or redesign with different variables (STXS 1.3?)
- Approach optimal sensitivity of "direct analysis"?

26

FIG. 11: Expected constraints from a simultaneous fit of (from left to right) δc_z , c_{zz} , $c_{z\Box}$, and \tilde{c}_{zz} using associated production and $H \to 4\ell$ decay with 3000 fb⁻¹ data. The EFT coupling constraints are the result of re-interpretation from the signal strength and f_{qi} measurements discussed in text. The constraints on each parameter are shown with the other parameters describing the HVV and Hgg couplings profiled. Two analysis scenarios are shown: using MELA observables and using STXS binning. The dashed horizontal lines show the 68 and 95% CL regions.

- EFT effects can vary considerably within same STXS bin
- Problematic if analysis selection efficiency varies across bin
- For the most part, STXS is sufficiently fine-grained to ensure these effects are small → Not always case for high pT bins!

- EFT effects can vary considerably within same STXS bin
- Problematic if analysis selection efficiency varies across bin

CMS Simulation $H \rightarrow \gamma\gamma$

For the most part, STXS is sufficiently fine-grained to ensure these effects are small \rightarrow Not always case for high pT bins!

- EFT effects can vary considerably within same STXS bin
- Problematic if analysis selection efficiency varies across bin

29

For the most part, STXS is sufficiently fine-grained to ensure these effects are small \rightarrow Not always case for high pT bins!

- EFT effects can vary considerably within same STXS bin
- Problematic if analysis selection efficiency varies across bin

30

For the most part, STXS is sufficiently fine-grained to ensure these effects are small \rightarrow Not always case for high pT bins!

Shape effects

● EFT can also modify the shape of fitted observable e.g. for multivariate output

Shape effects

Compare inclusive vs per-bin scaling functions

EFT can also modify the shape of fitted observable e.g. for multivariate output

Shape effects

Compare inclusive vs per-bin scaling functions

Future prospects

● What can we do to improve our STXS-SMEFT interpretations?

Future prospects

- What can we do to improve our STXS-SMEFT interpretations?
	- 1. STXS @ decay: include fiducial selection on Higgs decay products
	- 2. Updated binning scheme: STXS stage 1.3
	- 3. Better tools/machinery
	- 4. Ease comparisons/combinations
		- Common STXS-SMEFT parametrisation (see [talk from Charlotte\)](https://indico.cern.ch/event/1378665/contributions/5901963/)
		- \circ Align PCA rotation for common basis \rightarrow can observe improvements over time
		- UV-matching benchmarks

STXS @ decay

- Acceptance corrections arise due to lack of fiducial selection on Higgs decay products
- Imposed fiducial region that approximates experimental acceptance \rightarrow derive parametrisation within that region
- [Discussions for binning @ decay](https://indico.cern.ch/event/1327457/) in LHCHWG have been ongoing for some time

Suggested fiducial selection for STXS in decay

* Almost identical to ATLAS fiducial selection, exception: angle in ΔR place

Evolution of STXS

- Finer splittings could help alleviate some of the aforementioned pitfalls
- Also additional splittings will enhance SMEFT sensitivity \rightarrow [STXS 1.3 being finalized.](https://indico.cern.ch/category/5848/) Some highlights...

VH: Make additional solid splits at 400 and 600 GeV

qqH: add dPhijj bins to gain CP sensitivity

ttH: Add high pTH bins at 650 GeV

Improved tools

- Some caveats require knowledge of EFT effects "after detector"
	- Selection effects, shape variations in fitted observable, …
	- Developed tools for "post-mortem" reweighting after detector simulation (using gen-level info)
- Ultimately, STXS-SMEFT fits are a huge technical challenge
	- \circ Especially quadratic parametrisation \rightarrow Complicated likelihood surface
	- Performed with [CMS Combine tool](https://arxiv.org/pdf/2404.06614.pdf)
	- Would benefit from recent RooFit advancements
		- Vectorised evaluations with GPUs
		- Auto-grad

■ …

Global fit input

● STXS measurements are excellent input for SMEFT global fits

Global fit input

- STXS measurements are excellent input for SMEFT global fits
- A few things to consider:
	- 1. Choice of flavour scheme
	- 2. Current STXS interpretations only consider EFT in Higgs signal
		- Simultaneously parametrise signal and background?
	- 3. Statistical independence (orthogonality)
		- Control regions in STXS could overlap with signal regions elsewhere?
	- 4. Computationally challenging fits

Summary

- STXS provides a natural framework on which to base SMEFT interpretations
- Use kinematic information in measurements to further constrain BSM physics
- Caveats of STXS can somewhat limit the validity of interpretation
	- Particularly troublesome for "theorists approach" which only sees unfolded measurements
	- We (the experiments) have the knowledge (and inputs) to fully account for STXS pitfalls
	- Alleviate by improving STXS framework + developing tools
- Important ingredient for global EFT fits

2

