

## The interplay between PDF fits and heavy New Physics searches

### Luca Mantani





In collaboration with: PBSP collab: Maria Ubiali, Elie Hammou, James Moore, Mark Costantini, Manuel Morales, Maeve Madigan, Zahari Kassabov

CMS EFT workshop







## Motivation

























 $\sigma = \int_0^1 dx_1 \int_0^1 dx_2 \sum_{q_1, q_2} f_{q_1}(x_1) f_{q_2}(x_2) \hat{\sigma}(x_1, x_2)$ 





#### Luca Mantani

 $\sigma = \int_0^1 dx_1 \int_0^1 dx_2 \sum_{q_1, q_2} f_{q_1}(x_1) f_{q_2}(x_2) \hat{\sigma}(x_1, x_2)$ 

NNPDF4.0 NNLO Q = 3.2 GeV1.0 **g/10** Uv Uv 8.0  $d_v$ S S 0.6 **∽** 'ū d 📉 C C 0.4 0.2 0.0  $10^{-2}$  $10^{-1}$ 10<sup>0</sup>  $10^{-3}$ 

Ball et. al, NNPDF4.0, 2109.02653

Х

3



## PDF determination



#### Kinematic coverage



Luca Mantani

Ball et. al, NNPDF4.0, 2109.02653

#### Data driven determination

#### **Theory assumptions**

Measurements



## PDF determination



#### Kinematic coverage



Luca Mantani

Ball et. al, NNPDF4.0, 2109.02653

#### Data driven determination





## Could PDFs conceal NP?



#### Luca Mantani



### PDF parametrisation is flexible... extrapolation is tricky

Central value/uncertainty pre-LHC badly estimated

Separating datasets for PDF and NP is not optimal

## Could PDFs conceal NP?



We want to have as much kinematic coverage as possible, but...

#### Luca Mantani



### PDF parametrisation is flexible... extrapolation is tricky

Central value/uncertainty pre-LHC badly estimated

Separating datasets for PDF and NP is not optimal

## Could PDFs conceal NP?



#### Luca Mantani



### PDF parametrisation is flexible... extrapolation is tricky

Central value/uncertainty pre-LHC badly estimated

Separating datasets for PDF and NP is not optimal

We want to have as much kinematic coverage as possible, but...

Is it possible that NP is being absorbed in the proton?

Luca Mantani



### Typically fits of physics parameters and PDFs do not talk

### $\sigma(C,\theta) = f_1(C,\theta) \otimes f_2(C,\theta) \otimes \hat{\sigma}(C)$

**PDFs** extraction

### \* Fix physics parameters *C*

 $\sigma(\bar{C},\theta) = f_1(\bar{C},\theta) \otimes f_2(\bar{C},\theta) \otimes \hat{\sigma}(\bar{C})$ 

We extract the PDFs from data, we have implicit dependence  $\theta^* = \theta^*(C)$ 

Luca Mantani



### Typically fits of physics parameters and PDFs do not talk

### $\sigma(C,\theta) = f_1(C,\theta) \otimes f_2(C,\theta) \otimes \hat{\sigma}(C)$

 $\sigma(C,\theta) = f_1(C,\theta) \otimes f_2(C,\theta) \otimes \hat{\sigma}(C)$ 

**PDFs** extraction

### \* Fix physics parameters C

 $\sigma(\bar{C},\theta) = f_1(\bar{C},\theta) \otimes f_2(\bar{C},\theta) \otimes \hat{\sigma}(\bar{C})$ 

We extract the PDFs from data, we have implicit dependence  $\theta^* = \theta^*(C)$ 

Luca Mantani



#### Typically fits of physics parameters and PDFs do not talk

### **Physics parameters**

### \* Fix PDF parameters $\overline{C}, \overline{\theta}$

### $\sigma(C,\bar{\theta}) = f_1(\bar{C},\bar{\theta}) \otimes f_2(\bar{C},\bar{\theta}) \otimes \hat{\sigma}(C)$

We extract the physics parameters from data, we have implicit dependence  $C^* = C^*(C, \theta)$ 



 $\sigma(C,\theta) = f_1(C,\theta) \otimes f_2(C,\theta) \otimes \hat{\sigma}(C)$ 

#### **PDFs** extraction



Luca Mantani



#### Typically fits of physics parameters and PDFs do not talk

### **Physics parameters**

### \* Fix PDF parameters $\overline{C}, \overline{\theta}$

### $\sigma(C,\bar{\theta}) = f_1(\bar{C},\bar{\theta}) \otimes f_2(\bar{C},\bar{\theta}) \otimes \hat{\sigma}(C)$

We extract the physics parameters from data, we have implicit dependence  $C^* = C^*(C, \theta)$ 



 $\sigma(C,\theta) = f_1(C,\theta) \otimes f_2(C,\theta) \otimes \hat{\sigma}(C)$ 

#### **PDFs extraction**



Luca Mantani



#### Typically fits of physics parameters and PDFs do not talk

### **Physics parameters**



FitMaker [2012:02779]









## SIMUnet

### Extension of the NNPDF framework



Luca Mantani







| <b>SMEFT-PDF</b> interplay in  | 20                               |
|--------------------------------|----------------------------------|
| top quark sector               | 01<br>•<br>•                     |
| Moderate effect on WC, ~ 5-10% | L –10<br>c <sup>/&gt;2</sup> –20 |

#### *Kassabov et al.,* [2303.06159]







# Going beyond: simultaneous fits



#### Luca Mantani

#### Kassabov et al., [2303.06159]







# Going beyond: simultaneous fits



#### Luca Mantani

#### Kassabov et al., [2303.06159]





Luca Mantani



### SIMUnet allows for generation of pseudodata containing NP

 $T = T(\theta_{SM}, \theta_{NP})$ 

Then, perform a PDF fit assuming  $\theta_{NP} = 0$  using the NNPDF methodology (standard SM PDF fit)

Luca Mantani



### SIMUnet allows for generation of pseudodata containing NP $T = T(\theta_{SM}, \theta_{NP})$

Then, perform a PDF fit assuming  $\theta_{NP} = 0$  using the NNPDF methodology (standard SM PDF fit)

 $f_1( heta) \otimes f_2( heta) \otimes \hat{\sigma}_S$ 

Functional form parameters (e.g. NN weights)

Luca Mantani



### SIMUnet allows for generation of pseudodata containing NP $T = T(\theta_{SM}, \theta_{NP})$

$$g_M \sim f_1^{true} \otimes f_2^{true} \otimes \hat{\sigma}$$

Then, perform a PDF fit assuming  $\theta_{NP} = 0$  using the NNPDF methodology (standard SM PDF fit)

 $f_1( heta) \otimes f_2( heta) \otimes \hat{\sigma}_S$ 

Functional form parameters (e.g. NN weights)

Luca Mantani



### SIMUnet allows for generation of pseudodata containing NP $T = T(\theta_{SM}, \theta_{NP})$

$$g_M \sim f_1^{true} \otimes f_2^{true} \otimes \hat{\sigma}$$

### **Assess whether we can mimic the modified interactions with "wrong" PDFs!**



# A case study: heavy W'





## Can the W'hide in the proton?

Suppose the underlying laws of nature are



"Real" proton structure

Luca Mantani

$$egin{aligned} &J_L^{a,\mu} = \sum_{f_L} ar{f}_L T\ &\mathcal{L}_{ ext{SMEFT}}^{W'} = \mathcal{L}_{ ext{SM}} - rac{g^2 \hat{W}}{2m_W^2} J_L^\mu J_{L,\mu}\ &\hat{\sigma} = \hat{\sigma}_{SM} + \hat{\sigma}_{NP} \end{aligned}$$

"Real" partonic cross-section



## Can the W'hide in the proton?

Suppose the underlying laws of nature are



"Real" proton structure

$$\sigma = \int_0^1 dx_1 \int_0^1 dx_2$$

Luca Mantani

$$J_L^{a,\mu} = \sum_{f_L} \bar{f}_L \dot{\sigma}_{MEFT}$$
 $\mathcal{L}_{\mathrm{SMEFT}}^{W'} = \mathcal{L}_{\mathrm{SM}} - \frac{g^2 \hat{W}}{2m_W^2} J_L^{\mu} J_{L,\mu}$ 
 $\hat{\sigma} = \hat{\sigma}_S M + \hat{\sigma}_N P$ 

"Real" partonic cross-section

 $f_{2} \sum f_{q_1}(x_1) f_{q_2}(x_2) \hat{\sigma}(x_1, x_2)$  $q_{1}, q_{2}$ 







Both CC and NC DY affected





Both CC and NC DY affected

#### Luca Mantani

#### NNPDF4.0 dataset + HL-LHC DY projections [arXiv: 2104.02723]



Data kinematic coverage is wide: can current PDFs absorb NP while keeping consistency across the whole set of observables?

# Contaminated PDFs





## Contaminated PDFs



#### Luca Mantani



Huge shift and yet we find a good fit to the data!

# Contaminated PDFs



### Huge shift and yet we find a good fit to the data!

Large-x behaviour in PDFs is not constrained: especially anti-quark PDFs allow for NP absorption



## Data-theory comparison



#### Luca Mantani



Data:  $f^{true} \otimes \hat{\sigma}_{NP}$ Theory:  $f^{fit} \otimes \hat{\sigma}_{SM}$ 

## Data-theory comparison



PDF shift is completely compensating the NP effect

Luca Mantani



Data:  $f^{true} \otimes \hat{\sigma}_{NP}$ Theory:  $f^{fit} \otimes \hat{\sigma}_{SM}$ 



**NP** concealed in the proton!!



Can we use forward V production to spot the contamination?





Can we use forward V production to spot the contamination?





Can we use forward V production to spot the contamination?

Current data does not cover the required kinematics: we need larger x





Can we use forward V production to spot the contamination?

Current data does not cover the required kinematics: we need larger x

Future low-energy measurements (e.g. EIC programme) could provide crucial input for PDFs!





## We repeat the exercise with projections from➡ FASER, FASER2, SND and AdvSND

## Forward facilities

## We repeat the exercise with projections from➡ FASER, FASER2, SND and AdvSND

 $u\bar{d} + d\bar{u}$  luminosity  $\sqrt{s} = 14$  TeV



## Forward facilities

# We repeat the exercise with projections from➡ FASER, FASER2, SND and AdvSND

 $u\bar{d} + d\bar{u}$  luminosity  $\sqrt{s} = 14$  TeV





## Forward facilities

## We repeat the exercise with projections fromFASER, FASER2, SND and AdvSND

 $u\bar{d} + d\bar{u}$  luminosity  $\sqrt{s} = 14$  TeV



#### Luca Mantani

# The additional high-x, low-Q data reduces absorption of NP



# Disentangling with a joint fit

### Simultaneous fit of PDFs and W parameter:



Luca Mantani



ud + du luminosity  $\sqrt{s} = 14 \text{ TeV}$ 



## Conclusions

- The PDF-EFT interplay could be crucial: PDFs can in principle mimic EFT corrections.
- **V** UV completion exist that can be absorbed in the PDF parametrisation.
- Current kinematic coverage of PDF datasets is insufficient, forward facilities will provide vital input.
- The SIMUnet methodology offers the possibility to study such scenarios and potentially disentangle the effects.

![](_page_50_Picture_0.jpeg)

![](_page_50_Picture_2.jpeg)

![](_page_50_Picture_3.jpeg)

![](_page_50_Picture_4.jpeg)

![](_page_51_Picture_0.jpeg)

![](_page_51_Picture_2.jpeg)

![](_page_51_Picture_3.jpeg)

![](_page_51_Picture_4.jpeg)

Direct search (Bumps)

Luca Mantani

![](_page_52_Picture_3.jpeg)

![](_page_52_Picture_4.jpeg)

Ε

Direct search (Bumps) Indirect (scouting tails)

![](_page_53_Picture_3.jpeg)

Direct search (Bumps) Indirect (scouting tails) New physics is heavy

![](_page_54_Picture_3.jpeg)

Direct search (Bumps) Indirect (scouting tails) New physics is heavy

![](_page_55_Picture_3.jpeg)

Direct search (Bumps) Indirect (scouting tails) New physics is heavy

### Framework to describe both precision physics and Heavy New Physics

![](_page_56_Figure_4.jpeg)

Direct search (Bumps) Indirect (scouting tails) New physics is heavy

Luca Mantani

![](_page_57_Figure_5.jpeg)

### Framework to describe both precision physics and Heavy New Physics

### **Standard Model Effective Field Theory (SMEFT)**

### Spurious New Physics $pp \to W^+ H$

![](_page_58_Figure_1.jpeg)

Luca Mantani

![](_page_58_Picture_3.jpeg)

 $pp \to W^+ W^-$ 

23

### Spurious New Physics $pp \to W^+ H$

![](_page_59_Figure_1.jpeg)

Observables not affected by W'

#### Luca Mantani

![](_page_59_Picture_4.jpeg)

 $pp \to W^+ W^-$ 

**Spurious NP** 

## Fit metrics

![](_page_60_Figure_1.jpeg)

Baseline: SM pseudodata

#### Luca Mantani

24

![](_page_60_Figure_4.jpeg)

## Fit metrics

![](_page_61_Figure_1.jpeg)

![](_page_61_Figure_4.jpeg)

![](_page_61_Figure_5.jpeg)

![](_page_61_Picture_6.jpeg)

![](_page_61_Picture_7.jpeg)

![](_page_61_Picture_8.jpeg)

## BSM scenarios

![](_page_62_Figure_1.jpeg)

## Ratio observables

Luca Mantani

### Observable which is independent of PDFs

![](_page_63_Picture_4.jpeg)

## Ratio observables

![](_page_64_Figure_1.jpeg)

Luca Mantani

### Observable which is independent of PDFs

Ratio of WW and DY: prediction has suppressed dependence on PDF

![](_page_64_Picture_6.jpeg)

## Ratio observables

![](_page_65_Figure_1.jpeg)

Luca Mantani

### Observable which is independent of PDFs

Ratio of WW and DY: prediction has suppressed dependence on PDF

![](_page_65_Picture_5.jpeg)

**NP** is there... but where?

![](_page_65_Picture_8.jpeg)