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• Goal of this talk is to take what we learned from the 
theory talks, and discuss how it applies to doing an 
experimental EFT analysis 

• I.e. we will try to bridge the gap between the preceding 
theory talks, and the following hands-on tutorial 

• Aim to get a conceptual understanding of the code that 
we’ll work though next

Goal of the talk

Presentations 
from theory 

experts

This 
talk Hands-on 

coding 
exercises
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Introduction to experimental EFT

The big-picture experimental goal is to compare EFT prediction 
to data in order to extract confidence intervals for the WCs 
(Wilson Coefficients), involves three main steps:  

1. Generate MC that incorporates the EFT into the 
prediction 

2. Perform selection to obtain the events of interest, 
summarized in histogram objects 

3. Perform a statistical analysis to compare the prediction 
to the observation and extract confidence intervals

1: Data 
collection 
and MC 

production
NanoAOD

2: Late-stage 
data analysis, 
histogramming 0
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Outline for this talk

• Recap of EFT: What to know for an analysis 

• Getting the prediction in terms of EFT (Step 1) 

• EFT histogramming (Step 2)  

• Extracting limits on EFT parameters (Step 3) 
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ℒEFT =

SM is lowest 
order piece

+

Brief introduction to SM EFT*

Higher order corrections 
(think Taylor series)

*There are many types of EFTs, but in this presentation, we will focus specifically on SMEFT
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ℒEFT =

SM is lowest 
order piece

∑
i

ci

Λ
𝒪(5)

i + ∑
i

ci

Λ2
𝒪(6)

i + . . .+

Brief introduction to SM EFT*

*There are many types of EFTs, but in this presentation, we will focus specifically on SMEFT
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ℒEFT =

SM is lowest 
order piece

E
ELHC

Energy 
scale of 

NP

∑
i

ci

Λ
𝒪(5)

i + ∑
i

ci

Λ2
𝒪(6)

i + . . .+

Brief introduction to SM EFT*

Operators are built of 
products of SM fields 
and their derivatives

Wilson Coefficient 
(WC), strength of 

interaction

Note that if all WC=0, SM is 
recovered, so a nonzero WC 

is a sign of new physics! 

*There are many types of EFTs, but in this presentation, we will focus specifically on SMEFT
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ℒEFT =

SM is lowest 
order piece

E
ELHC

Energy 
scale of 

NP

∑
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ci

Λ
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Λ2
𝒪(6)
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Brief introduction to SM EFT*

Operators are built of 
products of SM fields 
and their derivatives

Wilson Coefficient 
(WC), strength of 

interaction

∼
c

Λ2
∼

1
p2 − M2

Valid for p ≪ M

Full theory EFT

Example of EFT in action..

Note that if all WC=0, SM is 
recovered, so a nonzero WC 

is a sign of new physics! 

*There are many types of EFTs, but in this presentation, we will focus specifically on SMEFT
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The EFT vertices can impact observables,  
where the strengths of the impacts are  

determined by the WCs that scale the vertices 
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2 heavy quarks 
and 2 light quarks 

2 heavy quarks 
and bosons

2 heavy quarks 
and 2 leptons
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4 heavy quarks

(A few 
example 
vertices 
shown 
here)
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WC value

WC=0 NOT 
consistent 
with data

New 
physics!!

WC=0 
consistent 
with data WC value

Constraints 
and info on 

 probedΛ

EFT?
SM

What: Compare prediction 
to data to find WC values

Why: Any non-zero WC 
would be new physics!

How?
Parameterize some prediction in terms of the WCs 

Compare observation to prediction and extract best fit 
values and corresponding uncertainties for the WCs

Some 
observable

mailto:k.mohrman@ufl.edu
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Outline for this talk
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• Getting the prediction in terms of EFT (Step 1) 
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How do observables depend on EFT? Let’s start with σ

σ ∝ |ℳSM +
ci

Λ2
ℳi |

2 ∝ s0 + si
ci

Λ2
+ sij

ci

Λ2

cj

Λ2 =

If the EFT is modeled linearly in amplitude, the cross section is 
an n-quadratic in terms of the WCs (where n is number of WCs)

+

2

σ ∝
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Interference 
with SMSM

+x xx ++
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∝σ ∝

Quadratic new 
physics
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This holds for any cross section, inclusive or differential
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el

d

How to get a prediction as a function of EFT

1. Write the prediction in the observable bins as a function of WCs 

2. Compare that to the observation to extract limits for the WCs

16

Predicted yield = f (ci)

Observed yield

Kelci Mohrman, k.mohrman@ufl.edu
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1. Write the prediction in the observable bins as a function of WCs 

2. Compare that to the observation to extract limits for the WCs

17

Predicted yield = f (ci)

Observed yield

 =  s0 + si ci + sij ci cj   =

Kelci Mohrman, k.mohrman@ufl.edu

How to get a prediction as a function of EFT
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2. Compare that to the observation to extract limits for the WCs
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Predicted yield = f (ci)

Observed yield

 =  s0 + si ci + sij ci cj   =

Kelci Mohrman, k.mohrman@ufl.edu

But we’d expect 
the dependence 
to vary from bin 

to bin 

How to get a prediction as a function of EFT
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Predicted yield = f (ci)

Observed yield

 =  s0 + si ci + sij ci cj   =
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But we’d expect 
the dependence 
to vary from bin 

to bin 2lss
Yi

el
d

3l onZ

ttW
ttZ
ttH

EFT dependence impacted by bin makeup

How to get a prediction as a function of EFT
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1. Write the prediction in the observable bins as a function of WCs 

2. Compare that to the observation to extract limits for the WCs
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Predicted yield = f (ci)  =  s0 + si ci + sij ci cj   =

Kelci Mohrman, k.mohrman@ufl.edu

But we’d expect 
the dependence 
to vary from bin 

to bin 

EFT?
SM

pT

Observed yield

EFT dependence also impacted by kinematics

How to get a prediction as a function of EFT
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How do we find the quadratic 
parametrization for each bin’s yield?

21

• The key is to parametrize the weight of each simulated event as a 
quadratic in terms of the WCs

Kelci Mohrman, k.mohrman@ufl.edu
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How do we find the quadratic 
parametrization for each bin’s yield?

22

• The key is to parametrize the weight of each simulated event as a 
quadratic in terms of the WCs 

• Can then find any arbitrary bin’s yield as a function of the WCs by 
summing the quadratics of the events that fall in the bin

+ += =
Event 1 Event 2 Event 3 Bin's 

parametrization

=  Σwi + ...

Some bin

Yi
el

d
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• The key is to parametrize the weight of each simulated event as a 
quadratic in terms of the WCs 

• Can then find any arbitrary bin’s yield as a function of the WCs by 
summing the quadratics of the events that fall in the bin

+ += =
Event 1 Event 2 Event 3 Bin's 

parametrization

=  Σwi + ...

Some bin

Yi
el

d

Kelci Mohrman, k.mohrman@ufl.edu

Rest of the section will explain how 
we can find these per-event quadratic 
parameterizations using reweighting
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Extracting the quadratic dependence for a single event

• How do we find the quadratic dependence for each of the generated events?  
• Use MG reweighting (will be introduced in the tutorial) e.g. for one single WC: 

1. Pick a "starting point" in the WC space, and MG generates an event (at 
some point in kinematic space) under the assumption of the given point in 
WC space (e.g. a "c=1" assumption)

Event 
weight

c

In this example, this is 
the weight at the starting 

point  (this is step 1)

Kelci Mohrman, k.mohrman@ufl.edu
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Extracting the quadratic dependence for a single event

• How do we find the quadratic dependence for each of the generated events?  
• Use MG reweighting (will be introduced in the tutorial) e.g. for one single WC: 

1. Pick a "starting point" in the WC space, and MG generates an event (at 
some point in kinematic space) under the assumption of the given point in 
WC space (e.g. a "c=1" assumption) 

2. Ask MG "what would the weight of this event have been at a different 
point in the WC space?" 

Event 
weight

c

In this example, this is 
the weight at the starting 

point  (this is step 1)
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Extracting the quadratic dependence for a single event

• How do we find the quadratic dependence for each of the generated events?  
• Use MG reweighting (will be introduced in the tutorial) e.g. for one single WC: 

1. Pick a "starting point" in the WC space, and MG generates an event (at 
some point in kinematic space) under the assumption of the given point in 
WC space (e.g. a "c=1" assumption) 

2. Ask MG "what would the weight of this event have been at a different 
point in the WC space?"  

3. Repeat step 2 for at least  points in the WC space((n + 1)2 − (n + 1))/2 + n + 1

Event 
weight

c

Since we only have one WC, need 3 total points, so 
need two reweight points, e.g. these (steps 2-3)

In this example, this is 
the weight at the starting 

point  (this is step 1)
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Extracting the quadratic dependence for a single event

• How do we find the quadratic dependence for each of the generated events?  
• Use MG reweighting (will be introduced in the tutorial) e.g. for one single WC: 

1. Pick a "starting point" in the WC space, and MG generates an event (at 
some point in kinematic space) under the assumption of the given point in 
WC space (e.g. a "c=1" assumption) 

2. Ask MG "what would the weight of this event have been at a different 
point in the WC space?"  

3. Repeat step 2 for at least  points in the WC space 
4. From the set of points in WC space and the associated weights, extract 

the quadratic parameterization

((n + 1)2 − (n + 1))/2 + n + 1

Event 
weight

c

Since we only have one WC, need 3 total points, so 
need two reweight points, e.g. these (steps 2-3)

Draw the 
quadratic based 
on these three 
points (step 4)

In this example, this is 
the weight at the starting 

point  (this is step 1)
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Why do different events have different quadratic shapes?

• Recall that MG will generate each event at a different kinematic point 
• The kinematic point will be relatively less/more likely to be populated based 

on the theory assumption (i.e. at which point in WC space we are sitting) 
• A complication to remember: Due to MG unweighting, the weight at the 

starting point will always be of the same magnitude (regardless of the 
differences in kinematics)

In this conceptual 
example, we're 

exploring different 
quadratic shapes 
we might see for 

three different 
simulated events 

This is somewhat difficult to 
conceptualize (at least for me) 

but remember that at the starting 
point, differences in probability 
due to different kinematics are 
conveyed by how many events 
are generated at a given phase 
space point, rather than by the 
weight of the given event at the 

given point in the space

Kelci Mohrman, k.mohrman@ufl.edu
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Summary and some caveats

• Summary: If you have a sufficient number of reweighs points, you can extract the 
quadratic parametrization for each event’s weight, which allows you to know the 
value of the event weight at any arbitrary point in the EFT space  

• This can be a powerful approach for several reasons: 
- Allows essentially arbitrary regions in the EFT space to be probed with 

just a single sample  
- Allows the full effects of the EFT on kinematics to be accounted for  
- If the weights are carried through to detector level, allows  EFT effects on 

acceptance/efficiency to be incorporated  

• Caveats: 
- Vitally crucial to thoroughly validate the reweighted samples to ensure the 

sample can be consistently reweighted throughout the relevant EFT space 
- Important to explore the statistical power of the sample (highly non-

uniform event weights degrade the statistical power)  
- Computationally challenging to produce samples with many WCs 

Kelci Mohrman, k.mohrman@ufl.edu
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Outline for this talk

• Recap of EFT: What to know for an analysis 

• Getting the prediction in terms of EFT (Step 1) 

• EFT histogramming (Step 2)  

• Extracting limits on EFT parameters (Step 3) 
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From regular histograms to “EFT aware” histograms

• Before we jump into EFT-aware histograms, let's start by recalling some concepts 
about "regular" histograms  

• A regular histogram is essentially a list of bin values and corresponding bin edges  

- The value in each bin is just the sum of the weights of all of the events that 
pass the selection criteria for the given bin 

- To get the yield, need to normalize properly

Sum of the weights of 
the events that pass 
the selection criteria 

for this bin
Normalization

Yield

Some observable bins

Kelci Mohrman, k.mohrman@ufl.edu

“Regular” histogram  =  [                      ,                        ,                        ]Value for bin 1 Value for bin 2 Value for bin 3

“Regular” histogram
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• Before we jump into EFT-aware histograms, let's start by recalling some concepts 
about "regular" histograms  

• A regular histogram is essentially a list of bin values and corresponding bin edges  

- The value in each bin is just the sum of the weights of all of the events that 
pass the selection criteria for the given bin 

- To get the yield, need to normalize properly

Sum of the weights of 
the events that pass 
the selection criteria 

for this bin
Normalization

Yield

Some observable bins

Kelci Mohrman, k.mohrman@ufl.edu

Norm * ( w1 + w2 + w3 … )

“Regular” histogram  =  [                      ,                        ,                        ]Value for bin 1 Value for bin 2 Value for bin 3

From regular histograms to “EFT aware” histograms

“Regular” histogram
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• Before we jump into EFT-aware histograms, let's start by recalling some concepts 
about "regular" histograms  

• A regular histogram is essentially a list of bin values and corresponding bin edges  

- The value in each bin is just the sum of the weights of all of the events that 
pass the selection criteria for the given bin 

- To get the yield, need to normalize properly

Sum of the weights of 
the events that pass 
the selection criteria 

for this bin
Normalization

Yield

Some observable bins

Kelci Mohrman, k.mohrman@ufl.edu

Norm * ( + +
Event 1 Event 2 Event 3

)=+ ...

From regular histograms to “EFT aware” histograms

“EFT aware” histogram

“Regular” histogram  =  [                      ,                        ,                        ]Value for bin 1 Value for bin 2 Value for bin 3
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• Before we jump into EFT-aware histograms, let's start by recalling some concepts 
about "regular" histograms  

• A regular histogram is essentially a list of bin values and corresponding bin edges  

- The value in each bin is just the sum of the weights of all of the events that 
pass the selection criteria for the given bin 

- To get the yield, need to normalize properly

Sum of the weights of 
the events that pass 
the selection criteria 

for this bin
Normalization

Yield

Some observable bins

Kelci Mohrman, k.mohrman@ufl.edu

Norm * ( + +
Event 1 Event 2 Event 3

)=+ ...

“EFT-aware” histogram  =  [                      ,                        ,                        ]
Quadratic 

parameterization 
for bin 1

Quadratic 
parameterization 

for bin 2

Quadratic 
parameterization 

for bin 3

From regular histograms to “EFT aware” histograms

“EFT aware” histogram
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• Before we jump into EFT-aware histograms, let's start by recalling some concepts 
about "regular" histograms  

• A regular histogram is essentially a list of bin values and corresponding bin edges  

- The value in each bin is just the sum of the weights of all of the events that 
pass the selection criteria for the given bin 

- To get the yield, need to normalize properly

Sum of the weights of 
the events that pass 
the selection criteria 

for this bin
Normalization

Yield

Some observable bins
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Norm * ( + +
Event 1 Event 2 Event 3

)=+ ...

“EFT-aware” histogram  =  [                      ,                        ,                        ]
Quadratic 

parameterization 
for bin 1

Quadratic 
parameterization 

for bin 2

Quadratic 
parameterization 

for bin 3
=  [                      ,                        ,                        ]

From regular histograms to “EFT aware” histograms

“EFT aware” histogram
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• Before we jump into EFT-aware histograms, let's start by recalling some concepts 
about "regular" histograms  

• A regular histogram is essentially a list of bin values and corresponding bin edges  

- The value in each bin is just the sum of the weights of all of the events that 
pass the selection criteria for the given bin 

- To get the yield, need to normalize properly

Sum of the weights of 
the events that pass 
the selection criteria 

for this bin
Normalization

Yield

Some observable bins

Kelci Mohrman, k.mohrman@ufl.edu

Norm * ( + +
Event 1 Event 2 Event 3

)=+ ...

“EFT-aware” histogram  =  [                      ,                        ,                        ]
Quadratic 

parameterization 
for bin 1

Quadratic 
parameterization 

for bin 2

Quadratic 
parameterization 

for bin 3
=  [                      ,                        ,                        ]

Instead of storing the sum of weight values, EFT 
histograms store the sum of the weight 

parameterizations (in terms of the WCs), will in 
principle be different for each bin (since in principle 

the dependence is different for each event)

From regular histograms to “EFT aware” histograms

“EFT aware” histogram
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Practical considerations:  
Tools for EFT-aware histograms

• Now that we’ve talked about the concepts of EFT-aware histograms, let’s 
discuss what this would look like in practice  

• We know we need to store the quadratic parameterization for each bin  

• But what really is the quadratic parameterization? Essentially it’s just a list 
of terms, e.g. for two WCs: 

• The terms are essentially a structure constant (called “s” in the above) and 
the corresponding variables (i.e. the WCs denoted ci) 

• If we follow a convention for the order of the terms, we can just store the list 
of WCs  and the structure constants  for each bin[c1, c2] [s0, s1, s2, s3, s4, s5,]

s0 + s1c1 + s2 c2
1 + s3c2 + s4c1c2 + s5c2

2Quad parameterization  = 

This is implemented in histEFT, which we will 
explore in the hands-on part coming next

See backup for discussion of ordering 
convention for structure constants

Some history: TOP-19-001 developed EFT-aware 
“TH1EFT”, then TOP-22-006 implemented new 
version on top of coffea hist and called it histEFT… 
but since coffee hist is now outdated, histEFT has 
recently been rewritten (by Ben Tovar of ND CCL) 
based on the scikit hep hist

Kelci Mohrman, k.mohrman@ufl.edu
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Visualization of putting it all together 
(example with just one bin)

Event 3 
weight

Event 2 
weight

Event 1 
weight

Yield is 
the sum 
of the 

weights, 
so also 

quadratic 
function 
of the 
WCs

Sum the 
quadratics

Observable bin
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Observable bin

Adjust  
the WCs

+ +

Predicted 
yield 

changes 
as the 

WCs are 
adjusted 

O
bs

er
va

bl
e 

yi
el

d

Observable bin

=

=

=

Yield Σwi

=

wi = s0i + ∑
j

s1ij cj + ∑
j

s2ij c2
j + ∑

j≠k

s3ijk cjck=

Obtain the fit coefficients for 
each event from MG reweighting

Kelci Mohrman, k.mohrman@ufl.edu

mailto:k.mohrman@ufl.edu


39Kelci Mohrman, k.mohrman@ufl.edu

Outline for this talk

• Recap of EFT: What to know for an analysis 

• Getting the prediction in terms of EFT (Step 1) 

• EFT histogramming (Step 2)  

• Extracting limits on EFT parameters (Step 3) 

1: Data 
collection 
and MC 

production
NanoAOD

2: Late-stage 
data analysis, 
histogramming 0
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Statistical analysis
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The likelihood

• The likelihood characterizes the probability of measuring the observed number 
of events, given the theory i.e. L = P(data|theory) 

• Write the likelihood as a product over the N bins in the analysis, each treated 
as an independent Poisson measurement, with a mean corresponding to the 
predicted yield (which is a quadratic function of the WCs) 

• We want to find the WC values that best agree with the data                         
(i.e. that maximize the likelihood) 

Product over the N 
bins in the analysis

m is the prediction in each bin, 
depends quadratically on the WCs 

, and the dependence on   is 
different in every bin

θ θ
n is the observed 

yield in the bin

mailto:k.mohrman@ufl.edu
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Understanding how the likelihood 
depends on the WCs

• We want to know how the likelihood depends on the WCs  

• Ideally would scan across all WCs and map out the likelihood, 
but realistically this is too computationally expensive more more 
than a few WCs 

• E.g. for a recent CMS analysis (TOP-22-006) a back-of-
the-envelope calculation indicated that even for a relatively 
sparse grid of 5 scan points in each direction and a 
relatively large amount of computing resources (10k CPU 
cores), it would take ~17 billion years to perform the scan  

• Instead, we scan across one WC and profile the others (allowing 
them to float to their best fit value for the given scan point) 

• This is computationally feasible, and allows us to understand the 
range of WC values that are consistent with the data 

mailto:k.mohrman@ufl.edu
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Extracting the confidence intervals

• For each WC, we scan across a range of values, profiling the other WCs  

• We can then read off the best fit point and the one and two standard 
deviation confidence intervals from the scans

Since WC=0 
is within the 
interval, this 

result is 
consistent 

with the SM

Others Profiled

Others Fixed to SM
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Extracting the confidence intervals

• For each WC, we scan across a range of values, profiling the other WCs  

• We can then read off the best fit point and the one and two standard 
deviation confidence intervals from the scans

1σ interval

2σ interval

Since WC=0 
is within the 
interval, this 

result is 
consistent 

with the SM

Others Profiled

Others Fixed to SM
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Recap of how the concepts fit into the workflow

Gridpack generation 

MC event simulation

Histogramming

Likelihood fitting

This is the step where we ask MG to     
find the weight at the set of reweight points

Throughout the simulation steps in a general workflow 
(LHE->GEN->SIM->DIGI->RECO->MAOD->NAOD), we 
can just carry along the set of weights until the point 
where we want to extract the quadratic fit 
In principle this can be done at any point in between the 
gridpack generation and histogramming, but in this 
tutorial we do it in the NanoGen step

Sum the quadratic parameterizations for all of the events 
passing the selection criteria for the given bins in order to 
find the parametrization for the predicted yield in the bin

Compare the parametrized yields to observed data and 
extract best fit values and confidence intervals for WCs 

Kelci Mohrman, k.mohrman@ufl.edu
Link to the repo for the tutorial

Next up: Hands-on tutorial!

mailto:k.mohrman@ufl.edu
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Recap of how the concepts fit into the workflow
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where we want to extract the quadratic fit 
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gridpack generation and histogramming, but in this 
tutorial we do it in the NanoGen step

Sum the quadratic parameterizations for all of the events 
passing the selection criteria for the given bins in order to 
find the parametrization for the predicted yield in the bin

Compare the parametrized yields to observed data and 
extract best fit values and confidence intervals for WCs 
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Link to the repo for the tutorial

Next up: Hands-on tutorial!
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Backup

Kelci Mohrman, k.mohrman@ufl.edu
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Advantageous vs more challenging 
aspects of the direct approach

More information available   
potential for more sensitivity   

Can handle final states with  
complicated admixtures of  
processes all affected  
differently by EFT 

Account for all relevant 
correlations

→

Challenging Advantageous

Analysis preser-
vation/longevity 

Reinterpretations  

Need to produce 
detector-level EFT 

simulations

50

These challenging aspects 
for direct approaches are 
generally advantages of 

the indirect approach

Kelci Mohrman, k.mohrman@ufl.edu
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How do observables depend on EFT? Let’s start with σ

σ ∝ |ℳSM +
ci

Λ2
ℳi |

2 ∝ s0 + si
ci

Λ2
+ sij

ci

Λ2

cj

Λ2
=

If the EFT is modeled linearly in amplitude, the cross section is 
an n-quadratic in terms of the WCs (where n is number of WCs)

Interference 
with SMSM Quadratic new 

physics

51Kelci Mohrman, k.mohrman@ufl.edu

+x xx ++

2

∝σ ∝

Other contributions at same  order as quad pieceΛ−4

x Λ−4~

dim8

x Λ−4~

dim6 dim6
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Term ordering convention for histEFT

• For histEFT, the term ordering convention follows the order of the lower 
triangle of an (n+1)x(n+1) matrix, where n is the number of WCs, and 
the order of the WCs is assumed to be [sm, c1, c2, …, cn] 

• Thus, if you know the WC order, you can reconstruct the quadratic 
parametrization from the list of terms

mailto:k.mohrman@ufl.edu
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Some technical considerations: 
Normalization of EFT-aware histograms

• Usually you don’t want to use the normalization straight from your generated 
sample (usually for EFT samples this is LO)  

• Want to normalize to the best available theory cross section, as usual  
• Usually achieve this normalization by dividing summing the parameterizations for 

all all generated events, then reweighting to the SM* (i.e. the SM prediction for 
the total cross section, denoted w(SM)) 

• After dividing by the w(SM), the constant term in your quadratic parameterization 
is 1, so after scaling by the lumi and the NLO xsec, the constant piece is the SM 
predicted yield

* Note: This normalization approach is not possible in the case when the SM prediction for 
your sample is 0 (e.g. for FCNC samples, a different normalization approach is required)

Kelci Mohrman, k.mohrman@ufl.edu
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Extracting the quadratic dependence, a toy example

• Let’s say we have just two WCs, called  and  

• We thus need 6 reweight points: 

c1 c2

((n + 1)2 − (n + 1))/2 + n + 1 |n=2 = 6

c1   c2    weight  
------------------ 
0    0     1.000 
0    1     0.909 
5    0     1.403 
5    10    0.721 
-5   10    0.333 
-10  10    0.418 
10   10    1.194

• Let’s say we run MG and get the following 
weights at the following points:  

• What we want to find are the structure 
constants (let’s call them ), given the set of 
reweight points and weights, i.e.: 

⃗s
A ⃗s = ⃗w

A =

1 (c1)0 (c2)0 (c2
1)0 (c2

2)0 (c1c2)0

1 (c1)1 (c2)1 (c2
1)1 (c2

2)1 (c1c2)1

1 (c1)2 (c2)2 (c2
1)2 (c2

2)2 (c1c2)2

1 (c1)3 (c2)3 (c2
1)3 (c2

2)3 (c1c2)3

1 (c1)4 (c2)4 (c2
1)4 (c2

2)4 (c1c2)4

1 (c1)5 (c2)5 (c2
1)5 (c2

2)5 (c1c2)5

1 (c1)6 (c2)6 (c2
1)6 (c2

2)6 (c1c2)6

, ⃗s =

s0
s1
s2
s3
s4
s5

, ⃗w =

w0(c1, c2)
w1(c1, c2)
w2(c1, c2)
w3(c1, c2)
w4(c1, c2)
w5(c1, c2)
w6(c1, c2)

T

(Notice that we have one 
more point than we need! 
This will let us make sure 

that this shape indeed 
looks quadratic)

Kelci Mohrman, k.mohrman@ufl.edu
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• Let’s plug in the numbers from our seven reweight points and find the  
that minimizes using  numpy.linalg.lstsq 

⃗s
| | ⃗w − A ⃗s | |

import numpy as np 

w = [ 1.000, 0.909, 1.403, 0.721, 0.333, 0.418, 1.194] 
A = [ 
    [1.0,   0.0,  0.0,   (0.0)**2,  (0.0)**2,   (0.0)*(0.0)  ], 
    [1.0,   0.0,  1.0,   (0.0)**2,  (1.0)*2,    (0.0)*(1.0)  ], 
    [1.0,   5.0,  0.0,   (5.0)**2,  (0.0)**2,   (5.0)*(0.0)  ], 
    [1.0,   5.0, 10.0,   (5.0)**2, (10.0)**2,   (5.0)*(10.0) ], 
    [1.0,  -5.0, 10.0,  (-5.0)**2, (10.0)**2,  (-5.0)*(10.0) ], 
    [1.0, -10.0, 10.0, (-10.0)**2, (10.0)**2, (-10.0)*(10.0) ], 
    [1.0,  10.0, 10.0,  (10.0)**2, (10.0)**2,  (10.0)*(10.0) ], 
] 

s, resid, _, _ = np.linalg.lstsq(A,w,rcond=None)

• We find that: s = [ 1.0, 0.062, -0.0996, 0.00372, 0.0043, -0.00232] 

• This means our quadratic dependence of the weight on WCs is thus: 

Extracting the quadratic dependence, a toy example

And the sum of 
the squared 

residuals is just 
1.15168414e-30, 

not too big :)

w(c1, c2) = 1 + 0.062 c1 − 0.0996 c2 + 0.00372 c2
1 + 0.0043 c2

2 − 0.00232 c1c2

Kelci Mohrman, k.mohrman@ufl.edu
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Just for 
fun
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