Event generation for EFT samples

Second LPC EFT Workshop @ Notre Dame April 22, 2024

Daniel Spitzbart (Boston U)

Generation qorkflow at a glance

- Not too many differences for EFT event generation compared to the "standard" CMS workflow
 - BUT: we definitely want to add EFT information: weights and coefficents
- Starting from a MG gridpack (see next slides): /eos/uscms/store/user/dspitzba/TT01j_tutorial_slc7_amd64_gcc700_CMSSW_10_6_19_tarball.tar.xz
- cmsDriver commands for full example chain can be found on PdmV twikis: e.g. <u>UL18</u>
- Interest of time: Go to NanoGEN directly, but all instructions work just as well for a "full" NanoAOD configuration

Telling madgraph what to do

- We want to generate a "gridpack" containing all the information about our favorite process
- A gridpack contains all executable Madgraph_aMC@NLO code necessary for event generation
- To generate this gridpack we need a set of files or cards:
 - The physics model, provided as UFO (Universal <u>FeynRules</u> Output)
 - Proc card: specifies the process definition
 - Run card: specifies the run parameters
 - Reweight card: specifies each of the new physics scenarios that will be probed
 - Some more cards can be added like the restrict card or customize card

Process card

```
Process card
       import model SMEFTsim_topU31_MwScheme_UF0
 1
 2
       define p = g u c d s b u \sim c \sim d \sim s \sim b \sim
 3
       define j = p
 4
                                                  Define particles:
       define l + = e + mu + ta +
 5
                                                  all particles defined in line 3 will be considered as initial state particles
 6
       define l - = e - mu - ta -
       define vl = ve vm vt
 7
       define vl \sim = ve \sim vm \sim vt \sim
 8
       define had = u c d s u~ c~ d~ s~
 9
10
                                                                                 Define the process
                    p p > t t~ @0 NPprop=0 SMHL00P=0 NP=1
       generate
11
12
       add process p p > t t~ j @1 NPprop=0 SMHL00P=0 NP=1
                                                                                 Model specific flags are added
       #add process p p > t t~ j j @2 NPprop=0 SMHL00P=0 NP=1
13
14
       # in 2l decay:
15
       #generate p p > t t_{\sim}, t > l + vl b, t_{\sim} > l - vl_{\sim} b_{\sim}
                                                                    @0 NPprop=0 SMHL00P=0 NP=1
16
       #add process p p > t t < j, t > l + vl b, t < > l - vl < b <
                                                                     @1 NPprop=0 SMHL00P=0 NP=1
17
18
                                                 Generates a folder with all the code needed
       output TT01j_tutorial -nojpeg
19
```


Run card

	Run card									
102	#**************************************									
103	<pre># Minimum and maximum pt's (for max, -1 means no cut)</pre>									
104	#**************************************									
105	10 = ptj ! minimum pt for the jets									
106	<pre>0 = ptb ! minimum pt for the b Minimum pt of objects is defined</pre>									
107	<pre>0 = pta ! minimum pt for the photons</pre>									
251	#**************************************									
252	5 = maxjetflavor ! Maximum jet pdg code maxjetflavor sets the flavor scheme									
253	#*************************************									
254	# Jet measure cuts *									
255	#**************************************									
256	10 = xqcut ! minimum kt jet measure between partons xqcut is the matching parameter									
257	#**************************************									

Reweight card

Reweight card

19	launchrwgt_name=EFTrwgt	1_ctGRe_1.0_ctGIm_0.0_ctWRe_0.0_ctWIm_0.0_ctBRe_0.0_ctBIm_0.0_cHtbRe_0.0_cHtbIm_0.0_cHt_0.0
20	set ctGRe 1.000000	
21	set ctGIm 0.000000	
22	set ctWRe 0.000000	
23	set ctWIm 0.000000	
24	set ctBRe 0.000000	All possible new physics scenarios are explored and
25	set ctBIm 0.000000	weights are calculated corresponding to each according
26	set cHtbRe 0.000000	weights are calculated corresponding to each scenario
27	set cHtbIm 0.000000	
28	set cHt 0.000000	
30	launchrwgt_name=EFTrwgt2	2_ctGRe_0.0_ctGIm_1.0_ctWRe_0.0_ctWIm_0.0_ctBRe_0.0_ctBIm_0.0_cHtbRe_0.0_cHtbIm_0.0_cHt_0.0
31	set ctGRe 0.000000	
32	set ctGIm 1.000000	
33		
55	set ctWRe 0.000000	
34	set ctWRe 0.000000 set ctWIm 0.000000	
34 35	set ctWRe 0.000000 set ctWIm 0.000000 set ctBRe 0.000000	
34 35 36	set ctWRe 0.000000 set ctWIm 0.000000 set ctBRe 0.000000 set ctBIm 0.000000	
34 35 36 37	set ctWRe 0.000000 set ctWIm 0.000000 set ctBRe 0.000000 set ctBIm 0.000000 set cHtbRe 0.000000	
34 35 36 37 38	set ctWRe 0.000000 set ctWIm 0.000000 set ctBRe 0.000000 set ctBIm 0.000000 set cHtbRe 0.000000 set cHtbIm 0.000000	

Generating a gridpack

- Follow instructions on github repository
- Commands have been tested on the LPC cluster (cmslpc-el8) and CERN lxplus (lxplus8)
 - You might need to run some parts in the right singularity containers → be careful
- We use central CMS tools (genproductions) that are complemented with notyet-central EFT specific tools (EFTfit)
 - Syntax and naming should be followed with care!

Creating an EFT NanoGEN sample

- Reminder: produced gridpack with multiple points in EFT parameter space
- Gridpack + Pythia fragment + cmsDriver commands → CMS sample
- How to keep the weights + coordinates in EFT space?
 - Keep the weights + names: use NamedWeights in NanoAOD / NanoGEN
 - Use code that extracts the polynomial coefficients
- For keeping weights we need to know the name which is set in the reweight_card, suffix depends on the <u>reweighting method</u> employed ("change mode ..."). Add weights to the NanoGEN configuration

```
4 change rwgt_dir rwgt
5
6 launch --rwgt_name=dummy
7
8 launch --rwgt_name=EFTrwgt0_ctGRe_0.0_ctGIm_0.0_ctWRe_0.0_ctWIm_0.0_ctBRe_0.0_ctBIm_0.0_cHtbRe_0.0_cHtbIm_0.0_cHt_0.0
9 set ctGRe 0.000000
10 set ctGIm 0.000000
11 set ctWRe 0 000000
```

 Using <u>EFTGenReader</u> package to extract coefficients, expects a certain naming scheme: "EFTrwgtN_{coeff}_{value}..."

Interlude: obtaining qcut values

- Important topic for any sample with additional partons at ME level, e.g. W+jets, tt+jets, ...
- Have to ensure that transition between ME (MadGraph) and PS (pythia) is smooth
 - Differential jet rate (DJR) distribution is a good measure for that
- DJR corresponds to the k_T separation for a given jet multiplicity
 - Example: For 2 jets with $\Delta k_T = 20$ GeV we get DJR(1 \rightarrow 2)=20 GeV

Bad qCut choices

- General rule of thumb: Don't go too high in qCut, otherwise you'll mainly keep events from the parton shower
 - Then what's the point of adding extra partons in the ME
 - Can also become very inefficient

Validating a sample

- Weights and coefficient distributions
 - Are there big tails in the distributions of weights?
- Comparing with a fixed-point sample
 - Do we actually reproduce distributions with reasonable precision?
 - Create a gridpack + sample at some interesting point in EFT space, using the customize card

BACKUP

Event generation in a nutshell

- Samples of simulated events are essential in high energy physics
- Processes at vastly different energy regimes are involved \rightarrow from hard lacksquarescattering to parton showering
- Luckily, this factorizes! lacksquareEvent generation Hard scatter لالالالالالا $_g$ IDDDDDD

Detector simulation

Example diagram of LO tt+Z production. Perturbative, MC integration of Matrix Element

g

- = underlying event
- + parton showering
- + hadronization
- + hadron decays

mostly non-perturbative

GEANT 4 ("FullSim"), Fast Simulation, Delphes

Jet Matching

- So far, every jet in the example comes from the parton shower code (Pythia8)
- MadGraph works well in perturbative (hard / large momentum) regime, Pythia in soft regime
- Can generate the full ME for W + N jets and combine the best of both worlds
 - Problem: Double counting!

Jet Matching

- Remember: Why do we need parton showering in the first place?
- QCD is
 - perturbative for large momentum transfers
 - → Matrix element calculation works well (i.e. what MG5 does)
 - non-perturbative for small momentum transfers

→ Need phenomenological scale evolution approach (i.e. what P8 does)

- Each approach works well in one regime, underperforms/fails in the other
- Obviously question: Can we get the advantages of both? Yes!
- Require the k_{τ} between two partons from MG5 to be above a threshold "xqcut", where

$$k_T = \sqrt{2 \min(p_{T_i}^2, p_{T_j}^2) [\cosh(\eta_i - \eta_j) - \cos(\phi_i - \phi_j)]}$$

- Run parton shower
- After showering, jet clustering is performed and it is checked whether all jets with kT > QCUT are matched to a ME-level parton.
 - if yes, keep the event
 - if no, reject

xqcut: parameter in MG run card QCUT: parameter in Pythia; serves as "boundary" between ME and PS

W + jets example

- Note that MG figured out on its own what diagrams to use.
- Notably absent: two jets from Z decay
- Unless we specifically ask for these, MG neglects them because the cross-section will be much smaller (EW instead of QCD)

W + jets example

Run card Turn on MLM matching:

1 = ickkw ! 0 no matching, 1 MLM, 2 CKKW matching

Cut value below which MG does not produce anything:

Propagate xqcut threshold to ptj and mjj cuts \rightarrow mostly for efficiency (can be a matter of life and death for complicated processes)

Results

=== Results Summary for run: pilotrun tag: tag_1 ===

Cross-section : 5.422e+04 +- 168.8 pb Nb of events : 0

LHE-level XS about a factor 2 larger than without jets!

Don't be fooled, this is mostly double counting (i.e. you don't just get to add jets to your signal to "increase cross-section")

Matching fixes this:

GenXsecAnalyzer:										
Overall cross-section summary										
Process 0 1 2	<pre>xsec_before [pb] 2.727e+04 +/- 1.840e+02 1.611e+04 +/- 1.087e+02 1.109e+04 +/- 7.484e+01</pre>	passed 289 100 85	nposw 289 100 85	nnegw 0 0 0	tried 515 304 181	nposw 515 304 181	nnegw 0 0 0	<pre>xsec_match [pb] 1.530e+04 +/- 6.051e+02 5.298e+03 +/- 4.355e+02 5.208e+03 +/- 4.129e+02</pre>	accepted [%] 56.1 +/- 2.2 32.9 +/- 2.7 47.0 +/- 3.7	event_eff [%] 56.1 +/- 2.2 32.9 +/- 2.7 47.0 +/- 3.7
Total	5.446e+04 +/- 2.264e+02	474	474	Θ	1000	1000	Θ	2.582e+04 +/- 8.666e+02	47.4 +/- 1.6	47.4 +/- 1.6
Before matching: total cross section = 5.446e+04 +- 2.264e+02 pb After matching: total cross section = 2.582e+04 +- 8.666e+02 pb Matching efficiency = 0.5 +/- 0.0 [10 BE USED IN MCM] Filter efficiency (taking into account weights)= (474) / (474) = 1.000e+00 +- 0.000e+00 Filter efficiency (event-level)= (474) / (474) = 1.000e+00 +- 0.000e+00 [TO BE USED IN MCM] After filter: final cross section = 2.582e+04 +- 8.666e+02 pb After filter: final fraction of events with negative weights = 0.000e+00 +- 0.000e+00 After filter: final fraction of events with negative weights = 0.000e+00 +- 0.000e+00 After filter: final equivalent lumi for 1M events (1/fb) = 3.874e-02 +- 5.037e-05										

Jet matching performance

- Recall: we have artificially split the physical process in energy regimes below and above a scale QCUT
- Transition between regimes needs to be smooth
- Can be investigated via Differential Jet Rates (DJR) distributions
 - DJR corresponds to the kT separation of the final clustering step for a given jet multiplicity

e.g. cluster event until it has 2 jets left (i.e. jet multiplicity = 2), and suppose these 2 jets have a kT separation of 20 GeV, then DJR(1→2) = 20 GeV Descreasing the cutoff scale from >20 GeV to <20 GeV turns event from 1-jet into 2-jet event

→ Goal is to find QCUT value that results in reasonably smooth DJR distributions for the sum of the contributions with different number of ME partons illustrated in next slides

QCUT = 10 GeV

At QCUT, the lower multiplicity sample is cut off \rightarrow Good

Clear discontinuity at QCUT → Bad

→ Try other values

Note: x-axis is in $log_{10}(GeV) \rightarrow QCUT=10 \text{ GeV}$ means x=1

QCUT = 15 GeV

Note how the cut-off moved in the plot

Better, but not great

→ Keep trying

April 22, 2024

QCUT = 20 GeV

partons partons partons partons partons partons all partons 0 partons 1 parton 2 partons 3 partons 4 partons 140 Looks better! 1200 6CX 601 Still very slight kink? May also be statistics DJR 6-1 DJR 1-3 all partons 0 partons 1 parton all partons partons Unfortunately no parton partons partons hard criterion, but this level of accuracy is typically fine 1000 If we wanted to know DJR 2-x DJR 1-> more accurately: More events partons parton + finer QCUT scan 2000 partons 1500

April 22, 2024

DJR 4-

QCUT = 25 GeV

LPC EFT Workshop @ Notre Dame

April 22, 2024

QCUT = 30 GeV

QCUT = 50 GeV

Quite bumpy now

Also, consider that we used xqcut = 10 GeV in MG

→ MG generated many events with 10-50 GeV jets; we are throwing these out now

→ Large xqcut-QCUT difference is very inefficient

DJR 4-s