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Overview 1
35

Outline of Lecture

Introduction to the ATLAS and CMS detectors

Review of relevant definitions and conventions

Low pT processes

Hadronic jets

W± and Z boson physics

Top quark physics

The context of the lectures will focus on the ATLAS and CMS experiments,
though LHCb and ALICE can and do study many of the processes discussed!

Where differences between ATLAS/CMS measurements are irrelevant or minor, I
will typically show ATLAS results as examples since I’m more familiar with this

experiment!
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Most general purpose hadron collider detectors (GPDs) (e.g. ATLAS, CMS, CDF,
DØ, UA1) share the same common components

Tracking Detector + Solenoid Magnet: Measure trajectory of charged particles
to infer momentum and charge, used to reconstruct primary interaction point

Electromagnetic Calorimeter: Measure the energy of high energy† electrons,
positrons and photons

Hadronic Calorimeter: Measure the energy of high energy† hadrons
(π±,K±, p/p̄), used (with EM calo.) to build “jets”

Muon Detector: Detect muons with momentum sufficient to traverse
calorimeters, sometimes a dedicated magnet system is present to measure
momentum and charge

Trigger: System to perform first coarse selection of “interesting” events to reduce
raw collision data rate (O(10MHz) at LHC) to a manageable rate (O(100Hz) at
LHC) for permanent storage and offline analysis

† Typically ET > 100 MeV



ATLAS Detector Overview 3
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CMS Detector Overview 4
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Definition of Kinematic Quantities 5
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LHC proton beam design energy is 7 TeV, pp collisions with up to
√

s = 14 TeV
occur at the interaction points (IP) (i.e. ATLAS/CMS detectors)
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Given the composite nature of the proton (i.e. quarks and gluons), longitudinal
momentum pz and total energy E are typically not very useful

Transvere momentum pT =
√

p2
x + p2

y is more helpful, initial pp system has
pT ≈ 0 so one can assume

∑
i p

i
T = 0 for the system of particles produced

Polar angle θ is not Lorentz invariant, so rapidity y and pseudo-rapidity η are
typically used (differences in y and η are Lorentz invariant)
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Event rates in pp collisions 6
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Total cross-section varies slowly with√
s, σTot ≈ 100 mb (at

√
s ≈ 10 TeV)

Elastic pp collisions
(σEl ≈ 0.25× σTot) result in no new
particles, protons simply exchange
momentum

Inelastic pp collisions
(σEl ≈ 0.75× σTot) can produce new
particles, one or both protons break up

Cross-sections for “interesting”
physics events (e.g. X = H,W ,Z , γ)
many orders of magnitude lower, but
tend to rise rapidly with

√
s (as√

s ≫ mX )
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Inelastic pp collisions 7
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Left: Phys. Rev. D 92, (2015) 012003 (arXiv:1503.08689) Right: Phys. Rev. Lett. 117 (2016) 182002 (arXiv:1606.02625)

(a) Non-diffractive (pp → X ) - Around 55% of total pp cross-section

Non-diffractive events involve colour exchange, more uniform production of
particles in y

(b) Single-diffractive (pp → Xp/pY ) - Around 12% of total pp cross-section

(c) Double-diffractive (pp → XY ) - Around 8% of total pp cross-section

Diffractive events involve excitation of one or both protons into a high mass colour
singlet state which decays to system X/Y, no colour is exchanged, localised (in y)
production of new particles



Soft pp interactions 8
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The majority of pp events at LHC energies involve soft non-diffractive processes,
characterised by a low particle multiplicity with low pT hadronic activity
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Figures: Phys. Lett. B 758 (2016) 67 (arXiv:1602.01633)

Generally referred to as “minimum bias” events (i.e. trigger requires minimal
activity in the detector, such as a single low pT track / calo. deposit)

Modelled semi-empirically with MC generators which are “tuned” to data,
predictions can vary quite a bit among generators / data used for tunes

But why should you care, even if you’re only interested in “high pT” physics?



Events with multiple pp collisions 9
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Given the high density of nominal LHC bunches (1011 protons/bunch), multiple
independent pp interactions in a single bunch crossing (“pileup”) are common

Most of these interactions are soft non-diffractive collision events, critical to
understand their behaviour!

This phenomenon presents a wide variety of challenges for triggering, event
reconstruction and physics analysis...
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↑ For peak Run 2 luminosities
(2 × 1034cm2s−1), mean number of
pp interactions was as high as 60!

↑ Candidate Z → µ+µ− event reconstructed
among 25 “pileup” pp interaction vertices



The “Underlying Event” 10
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In hard pp scattering events, the underlying event (UE) consists of the “beam
remnant” and particles produced in multiple parton interactions (MPI) and
inital/final state radiation
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Figure: arXiv:hep-ph/0311270

Not simply a “minimum bias” event overlaid on the hard scattering, activity is
correlated with hard process due to colour and momentum conservation

As with soft non-diffractive events, modelled with effective descriptions within MC
generators tuned to data



How to measure the “Underlying Event”? 11
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Since it accompanies every “interesting” pp event, we need to understand the UE,
but how can one disentagle the “hard process” from the underlying event in order
to measure it?

Divide azimuthal plane w.r.t. direction of leading pT
track into four regions

Towards and away regions sensitive to hard process

Transverse region is more sensitive to the UE
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(arXiv:1701.05390)

Use observables such as mean charged-particle pT and multiplicity in Transvere
region to “tune” predictions of UE models in MC generators



Hard parton – parton scattering in QCD 12
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The “QCD Collinear Factorisation” method is the basis of all pp scattering
calculations and MC simulations, cross-section calculation separated into two parts:

P2

P1

x2P2

x1P1

σ̂ij X

fj(x2, µ
2)

fi(x1, µ
2)

The “hard scattering” partonic
cross-section σ̂ for two partons (i.e.
quarks and gluons) ij → X

Calculable with perturbative QCD, often
systematically improvable with higher
order corrections to perturbative series

Description of the probability (density) f
to find a parton with (longitudinal)
momentum fraction x within a proton,
known as a parton density function

Non-perturbative quantity, obtained by
fitting to data (typically ep DIS
measurements)

σ(P1,P2) =
∑
i,j

∫
dx1dx2fi (x1, µ

2) · fj(x2, µ2) · σ̂ij(p1, p2, αS(µ
2),Q2/µ2)



Jets 13
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The fragmentation of a high energy quark/gluons into a collimated hadronic final
state is known as a “jet”

Hard pp interactions are dominated by jet production initiated hard qq, gg , qg
scattering, jets are ubiquitous at the LHC!

The hard scattering processes (e.g. gg → qq̄) are calculable in perturbative QCD

The soft fragmentation/hadronisation process (i.e. q/g → hadrons) is a
non-perturbative, rely on physically motivated MC models (e.g. Lund string)



Jet Definitions I 14
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Jets are defined with an algorithm which clusters constituants within an event
(usually calorimeter energy deposits, occasionally tracks) into a single entity

The Rules

For jets to make sense in the context of perturbative QCD to make sense, the
(hard) jets should not change when:

IR Safety: There is soft emission (i.e. add a very soft gluon)

Collinear Safety: There is a collinear splitting (i.e. one parton is replaced by two
such as g → qq̄)

Why should you care about the rules?

“Infrared unsafety is a serious issue, not just because it makes impossible to
carry out meaningful (finite) perturbative calcuations, but also because it

breaks the whole relation between the (Born or low-order) partonic structure of
the event and the jets that one observes, and it is precisly this relation that a
jet algorithm is supposed to codify: it makes no sense for the structure of
multi-hundred GeV jets to change radically just because hadronisation, the

underlying event or pileup threw a 1 GeV particle in between them.”
(arXiv:0704.0292)



Jet Definitions II 15
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Cone Algorithms:

Cluster all constituants within a given geometric cone,
defined by ∆R =

√
∆η2 +∆ϕ2

✗ Features: behaviour very susceptible to additional
soft gluon radiation (e.g. number of jets in event)

Generally considered obsolete (exception of SISCone)

JHEP 0804:063,2008 (arXiv:0802.1189)

Sequential Recombination Algorithms:

Successively combine the “closest” pair of
particles according to distance measure dij

Stop at a cut-off scale R, final clustering of
particles defines the jet

✓ Features: IR + Collinear safe

Version with p = −1 known as “anti-kT”,
widely used at ATLAS/CMS

dij = min
(
k2p
T,i , k

2p
T,j

) (
∆ϕ2

ij +∆η2
ij

)
R2



Inclusive Jet Cross-sections 16
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Jets are everywhere at the LHC, note y -axis units, ≈ 104 pb / GeV at pT = 100
GeV, very high rate! (c.f. total Higgs cross-section ≈ 20pb at

√
s = 7 TeV)

Cross-section for anti-kT R = 0.4
jet production as a function of jet
pT , for different rapidity (y)
ranges (note y -axis scaling on
plot)

Jet pT distribution spans many
orders of magnitude, drops
towards maximum

√
ŝ

kinematically allowed (few TeV
here)

Good agreement with NLO
perturbative QCD predictions
within experimental and
theoretical uncertainties
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JHEP 02 (2015) 153 (arXiv:1410.8857)



Di-jet Cross-sections 17
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← JHEP 05 (2018) 195 (arXiv:1711.02692)

Di-jet event with mjj = 9.3 TeV reconstructed in ATLAS

Di-jet production is another critical test of perturbative QCD

Good agreement with NLO perturbative QCD predictions within experimental and
theoretical uncertainties

Also important as a search channel for new resonances (e.g. Z ′ → qq̄)

Di-jet events with mjj up to 9 TeV measured at the LHC (
√
s = 13 TeV)



Multi-jet Cross-sections 18
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← ATLAS-CONF-2010-084

Event with 8 jets reconstructed in ATLAS

Multi-TeV pp collisions provide a huge phase space for multi-jet production

Another important test for QCD and MC generator predictions, critical
background for general searches for new physics



W and Z bosons 19
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W and Z boson production in pp collisions proceeds primarily through qq̄
annihilation (Drell-Yan), inclusive production often involves additional high pT jets

Leptonic W and Z boson decays are
the primary source of isolated high pT
leptons at the LHC

B(Z → ℓℓ) ≈ 3% B(W → ℓν) ≈ 11%

Useful as probes of parton densities
and for precise tests of the SM

Present in decays of H, top quark and
particles beyond the SM

Very useful as a calibration source for
lepton efficiency, energy scale /
resolution measurements

Important background for many
search channels (e.g. SUSY)

(jet)

q

q̄(′)

Z(W−)

ℓ−

ℓ+(ν̄)

Experimental Signature:

Z → ℓ+ℓ−: Pair of isolated high pT oppositely charged leptons
W± → ℓ±ν: Single isolated high pT lepton and large missing transverse energy



W and Z boson mass distributions 20
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Z → ℓ+ℓ− candidates

Di-lepton invariant mass distribution is the
primary means by which Z boson candidates
can be identified

Mass resolution (at ATLAS/CMS) is typically
smaller than ΓZ ≈ 2.5 GeV

Figures: Eur. Phys. J. C 77 (2017) 367 ( arXiv:1612.03016)

Reminder: mZ = 91.2 GeV and mW = 80.4 GeV
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W and Z inclusive cross-sections 21
35

↓ σW+/σ
W− σ

W±/σZ ↓

-
W
fidσ / +W

fidσ
1.2 1.22 1.24 1.26 1.28 1.3 1.32 1.34

ATLAS
-113 TeV, 81 pb

 total uncertainty±data 
 stat. uncertainty±data 

ABM12
CT14nnlo
NNPDF3.0
MMHT14nnlo68CL
ATLAS-epWZ12nnlo
HERAPDF2.0nnlo

-W
fidσ / +W

fidσ = -/W+WR

Z
fidσ / ±W

fidσ
9.4 9.6 9.8 10 10.2 10.4 10.6 10.8

ATLAS
-113 TeV, 81 pb

 total uncertainty±data 
 stat. uncertainty±data 

ABM12
CT14nnlo
NNPDF3.0
MMHT14nnlo68CL
ATLAS-epWZ12nnlo
HERAPDF2.0nnlo

Z
fidσ / ±W

fidσ = W/ZR

 [TeV]  s
1 10

 ll
) 

[n
b]

 
→*γ

 B
r(

Z
/

× *γ
Z

/
σ

2−10

1−10

1

)p* (pγZ/

* (pp)γZ/

-113 TeV, 81 pb

 ll→*γATLAS  Z/

 ll→*γCMS      Z/

µµ ee/→*γCDF   Z//

 ee→*γD0      Z/

 ee→*γUA1   Z/

µµ →*γUA1   Z/

 ee→*γUA2   Z/

NNLOCT14

ATLAS

 [TeV]  s
1 10

) 
[n

b]
 

ν
 l 

→
 B

r(
W

× 
Wσ

1−10

1

10

)pW (p

W (pp)

 (pp)+W

 (pp)-W

-113 TeV, 81 pb

ν l→ATLAS / CMS W/

ν+ l→+ATLAS / CMS W/

ν- l→-ATLAS / CMS W/

ν (l/e) →CDF W/

ν)µ (e/→D0 W/

ν l →UA1 W

ν e →UA2 W

ν)-/e+ (e→±Phenix W/

NNLOCT14

ATLAS

Figures: Phys. Lett. B 759 (2016) 601 (arXiv:1603.09222)



W+ and W− cross-sections 22
35

u

d̄

W+

ℓ+

ν

d

ū
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In pp collisions, σW+ > σW− , why?

Primarily due to larger valance u
quark proton parton density

The cross-section ratio is thus a
useful input to PDF fits
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Figures: JHEP 05 (2018) 077 (arXiv:1711.03296)
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Important test of perturbative QCD and common background for many searches

MC generators tend to struggle to describe multiplicity beyond 3 additional jets

Relative jet multiplicity very similar for W+ and W− until around 4 additional jets
where PDF effects become more important
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Figures: Eur. Phys. J. C77 (2017) 361 (arXiv:1702.05725)
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Important test of perturbative QCD and common background for many searches

MC generators tend to struggle to describe multiplicity beyond 3 additional jets
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The top quark was discovered by the CDF and DØ experiments at the Fermilab
Tevatron in 1995 and is unique among the other known quarks:

Lifetime of ≈ 5× 10−25 s (Γt ≈ 1.3 GeV), shorter than timescale associated with
hadronisation

Top quarks decay before they form bound states (i.e. no “toponium”)

Provides a unique opportunity to study the properties of a “bare” quark

Many interesting properties to study:

Mass - why is it so much larger than the other quarks?

Spin - is it consistent with the SM hypothesis of spin 1
2
(fermion)?

Width and decays - very large phase space open for decay products (e.g. BSM
particles?)

Couplings - in addition to gauge couplings, the top quark Yukawa coupling (tt̄H)
is expected to be ∼ 1 (i.e. very large!)
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Top Pair Production: this is the dominant source of top quarks at the LHC,
proceeds entirely via strong interactions

At the LHC, this process proceeds mainly via gluon-fusion (≈ 90%, left two
diagrams) and qq̄ annihilation (≈ 10%, right diagram)

Single top quark production: top quarks are also produced alone, in an
electroweak process, in association with other quarks and W bosons

At the LHC, the t-channel (centre diagram) process is the dominant source of
single top quark production

All diagrams from Wikipedia

https://en.wikipedia.org/wiki/Top_quark
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The decay t → Wb accounts almost the
entire top quark decay width

Other decays t → W {s, d} are
suppressed by very small CKM
elements and how not been observed
directly

Decays involving flavour changing
neutral currents (e.g. t → q{γ,H})
are very rare in the SM (loop
suppressed) and highly susceptible to
potential BSM contributions

Figure: Nature 429, 638–642 (2004)

From an experimental perspective, tt̄ decays are often categorised in three classes,
determined by the W boson decays (all involve two b-jets):

All-hadronic: Two hadronic (W → qq̄′) → up to six jets (44% of total)

Semi-leptonic: One hadronic (W → qq̄′) and one leptonic (W → ℓν) → up to
four jets, one lepton and neutrino (45% of total)

Di-leptonic: Two (W → qq̄′) → two jets, two leptons and two neutrinos (11% of
total)

https://www.nature.com/articles/nature02589
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Most precise measurements
made in the di-leptonic channel
due to higher S/B ratio, lower
susceptiblity to experimental
systematic uncertainties

Precision of LHC Run 2
measurements typically limited by
systematic and luminosity
uncertainties

tt̄ cross-sections sensitive to
different PDFs
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The cross-sections for single top quark production are at least an order of
magnitude lower than tt̄, but now firmly estblished by LHC measurements

Direct probe of |Vtb| and sensitive to a variety of BSM models
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The top quark mass is an important parameter of the SM and also has
implications for our understanding of SSB and the Higgs sector

Most precise measurements from the LHC offer O(100MeV) precision, now more
precise than the Tevatron combination (174.30± 0.65 GeV)

“Which top mass is being measured?” becomes a relevant question (i.e. soft QCD
effects relevant at 100 MeV scale)
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The physics available to study at the LHC is broad and very rich, spanning orders
of magnitude in terms of energy and coupling strength!

Soft interactions at a hadron collider can never be ignored, it’s essential that they
are well understood

Jets are everywhere at the LHC, important background to any measurement or
search

W and Z bosons are the primary source of isolated leptons

The LHC produces a huge number of top quarks, now a major background to
many Higgs / BSM searches


