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Overview

QOutline of Lecture
Introduction to the ATLAS and CMS detectors
Review of relevant definitions and conventions
Low p7 processes
Hadronic jets

W? and Z boson physics

Top quark physics

The context of the lectures will focus on the ATLAS and CMS experiments,
though LHCb and ALICE can and do study many of the processes discussed!

Where differences between ATLAS/CMS measurements are irrelevant or minor, |
will typically show ATLAS results as examples since I’'m more familiar with this
experiment!



General Purpose Detector Overview

Most general purpose hadron collider detectors (GPDs) (e.g. ATLAS, CMS, CDF,
D@, UA1) share the same common components

m Tracking Detector + Solenoid Magnet: Measure trajectory of charged particles
to infer momentum and charge, used to reconstruct primary interaction point

m Electromagnetic Calorimeter: Measure the energy of high energy' electrons,
positrons and photons

m Hadronic Calorimeter: Measure the energy of high energy’ hadrons
(7%, K*,p/p), used (with EM calo.) to build “jets”

m Muon Detector: Detect muons with momentum sufficient to traverse
calorimeters, sometimes a dedicated magnet system is present to measure
momentum and charge

m Trigger: System to perform first coarse selection of “interesting” events to reduce
raw collision data rate (O(10MHz) at LHC) to a manageable rate (O(100Hz) at
LHC) for permanent storage and offline analysis

T Typically Ey > 100 MeV



ATLAS Detector Overview
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CMS Detector Overview
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Definition of Kinematic Quantities

LHC proton beam design energy is 7 TeV, pp collisions with up to /s = 14 TeV
occur at the interaction points (IP) (i.e. ATLAS/CMS detectors)
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m Given the composite nature of the proton (i.e. quarks and gluons), longitudinal
momentum p, and total energy E are typically not very useful

m Transvere momentum pr = \/p? + pj is more helpful, initial pp system has
pr ~ 0 so one can assume . pr = 0 for the system of particles produced

m Polar angle 0 is not Lorentz invariant, so rapidity y and pseudo-rapidity 7 are
typically used (differences in y and 7 are Lorentz invariant) n =y for

}’=1In(E+pz) 71=1In (Ll-i_pz):—ln [tan <g>} massless
2 E—p, 2 lp| — p: 2 particles




Event rates in pp collisions

proton - (anti)proton cross sections
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Inelastic pp collisions

ATLAS (MBTS) — Pythia 8
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Left: Phys. Rev. D 92, (2015) 012003 (arXiv:1503.08689) Right: Phys. Rev. Lett. 117 (2016) 182002 (arXiv:1606.02625)
m (a) Non-diffractive (pp — X) - Around 55% of total pp cross-section

m Non-diffractive events involve colour exchange, more uniform production of
particles in y

(b) Single-diffractive (pp — Xp/pY) - Around 12% of total pp cross-section

(c) Double-diffractive (pp — XY) - Around 8% of total pp cross-section

m Diffractive events involve excitation of one or both protons into a high mass colour
singlet state which decays to system X/Y, no colour is exchanged, localised (in y)
production of new particles



Soft pp interactions

35

The majority of pp events at LHC energies involve soft non-diffractive processes,
characterised by a low particle multiplicity with low pr hadronic activity
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Figures: Phys. Lett. B 758 (2016) 67 (arXiv:1602.01633)

m Generally referred to as “minimum bias” events (i.e. trigger requires minimal
activity in the detector, such as a single low pr track / calo. deposit)

m Modelled semi-empirically with MC generators which are “tuned” to data,
predictions can vary quite a bit among generators / data used for tunes

But why should you care, even if you're only interested in “high pr” physics?



Events with multiple pp collisions

Given the high density of nominal LHC bunches (10'! protons/bunch), multiple
independent pp interactions in a single bunch crossing (“pileup”) are common

m Most of these interactions are soft non-diffractive collision events, critical to
understand their behaviour!

m This phenomenon presents a wide variety of challenges for triggering, event
reconstruction and physics analysis...
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(2 x 10**cm?s™"), mean number of 4 Candidate Z — .t~ event reconstructed
pp interactions was as high as 60! among 25 “pileup” pp interaction vertices



The “Underlying Event”

In hard pp scattering events, the underlying event (UE) consists of the
and particles produced in multiple parton interactions (MPI) and

inital/final state radiation

Figure: arXiv:hep-ph/0311270

m Not simply a “minimum bias” event overlaid on the hard scattering, activity is
correlated with hard process due to colour and momentum conservation

m As with soft non-diffractive events, modelled with effective descriptions within MC
generators tuned to data




How to measure the “Underlying Event”?

Since it accompanies every “interesting” pp event, we need to understand the UE,
but how can one disentagle the “hard process” from the underlying event in order
to measure it?

m Divide azimuthal plane w.r.t. direction of leading pr leading charged particle
track into four regions

m Towards and away regions sensitive to hard process

m Transverse region is more sensitive to the UE
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Use observables such as mean charged-particle pr and multiplicity in Transvere
region to “tune” predictions of UE models in MC generators




Hard parton — parton scattering in QCD
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The “QCD Collinear Factorisation” method is the basis of all pp scattering
calculations and MC simulations, cross-section calculation separated into two parts:

P iz, pu?)

fj(l’2>ll2)

The “hard scattering” partonic
cross-section & for two partons (i.e.
quarks and gluons) jj — X

Calculable with perturbative QCD, often
systematically improvable with higher
order corrections to perturbative series

Description of the probability (density)
to find a parton with (longitudinal)
momentum fraction x within a proton,
known as a parton density function

Non-perturbative quantity, obtained by
fitting to data (typically ep DIS
measurements)

o(P1, P2) = Z/dxldX2f}(X1Hu/2) (e, 1) - Gii(pr, p2, as (i), Q% /1)
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Jets B

The fragmentation of a high energy quark/gluons into a collimated hadronic final
state is known as a “jet”
m Hard pp interactions are dominated by jet production initiated hard qq, gg, qg
scattering, jets are ubiquitous at the LHC!
m The hard scattering processes (e.g. gg — qg) are calculable in perturbative QCD

m The soft fragmentation/hadronisation process (i.e. g/g — hadrons) is a
non-perturbative, rely on physically motivated MC models (e.g. Lund string)




Jet Definitions |

Jets are defined with an algorithm which clusters constituants within an event
(usually calorimeter energy deposits, occasionally tracks) into a single entity

The Rules

m For jets to make sense in the context of perturbative QCD to make sense, the
(hard) jets should not change when:

m IR Safety: There is soft emission (i.e. add a very soft gluon)

m Collinear Safety: There is a collinear splitting (i.e. one parton is replaced by two
such as g — qg)
Why should you care about the rules?

“Infrared unsafety is a serious issue, not just because it makes impossible to
carry out meaningful (finite) perturbative calcuations, but also because it
breaks the whole relation between the (Born or low-order) partonic structure of
the event and the jets that one observes, and it is precisly this relation that a
jet algorithm is supposed to codify: it makes no sense for the structure of
multi-hundred GeV jets to change radically just because hadronisation, the
underlying event or pileup threw a 1 GeV particle in between them.”
(arXiv:0704.0292)




Jet Definitions Il

Cone Algorithms:
m Cluster all constituants within a given geometric cone,
defined by AR = /An? + A¢?

m X Features: behaviour very susceptible to additional
soft gluon radiation (e.g. number of jets in event)

m Generally considered obsolete (exception of SISCone)

Sequential Recombination Algorithms:

o [GeV] m Successively combine the “closest” pair of
L particles according to distance measure dj

m Stop at a cut-off scale R, final clustering of
particles defines the jet

m v Features: IR + Collinear safe

m Version with p = —1 known as “anti-kt",
widely used at ATLAS/CMS

JHEP 0804:063,2008 (arXiv:0802.1189)

2 2
dj = min (k'f',,jh k'l2",7j) (A%;AUU)




Inclusive Jet Cross-sections L
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Jets are everywhere at the LHC, note y-axis units, =~ 10* pb / GeV at pr = 100
GeV, very high rate! (c.f. total Higgs cross-section =~ 20pb at /s = 7 TeV)
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jet Cross-sections
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m Di-jet production is another critical test of perturbative QCD

m Good agreement with NLO perturbative QCD predictions within experimental and
theoretical uncertainties

m Also important as a search channel for new resonances (e.g. Z' — qq)

m Di-jet events with mj; up to 9 TeV measured at the LHC (/s = 13 TeV)




Multi-jet Cross-sectio
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m Multi-TeV pp collisions provide a huge phase space for multi-jet production

m Another important test for QCD and MC generator predictions, critical
background for general searches for new physics



W and Z bosons L
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W and Z boson production in pp collisions proceeds primarily through qq
annihilation (Drell-Yan), inclusive production often involves additional high pr jets

m Leptonic W and Z boson decays are
the primary source of isolated high pr .
leptons at the LHC (iet)

m B(Z = U)~3%BW —v)=11% 4

m Useful as probes of parton densities

and for precise tests of the SM
. zZ(w™)
m Present in decays of H, top quark and

particles beyond the SM

m Very useful as a calibration source for
lepton efficiency, energy scale /
resolution measurements " 0+ (D)

m Important background for many
search channels (e.g. SUSY)
Experimental Signature:
Z — £7¢7: Pair of isolated high pr oppositely charged leptons
wE — gt Single isolated high pr lepton and large missing transverse energy



W and Z boson mass dist
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W and Z inclusive cross-sections
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W+ and W~ cross-sections

wt

ot

MSTW 2008 NNLO PDFs (68% C.L.)

12 12Ty
[ g
X Q?=10Gev?| X |Q? = 10* GeV?
% 1 4 % 1 \ b
\ g0
0.8 - 0.8 \ N
0.6 = 0.6 4
04 N 0.4 B
0.2 b 02r -
0 0 L
10*  10° 102 10" 1 0% 10° 102 10" 1

<
N

In pp collisions, o+ > o, —, why?

m Primarily due to larger valance u
quark proton parton density

m The cross-section ratio is thus a
useful input to PDF fits



boson production in association with jet(s)
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Figures: JHEP 05 (2018) 077 (arXiv:1711.03296)
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m Important test of perturbative QCD and common background for many searches

m MC generators tend to struggle to describe multiplicity beyond 3 additional jets

m Relative jet multiplicity very similar for W™ and W™ until around 4 additional jets
where PDF effects become more important




Z boson production in association with jet(s)

Figures: Eur. Phys. J. C77 (2017) 361 (arXiv:1702.05725)
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m Important test of perturbative QCD and common background for many searches

m MC generators tend to struggle to describe multiplicity beyond 3 additional jets




Introduction to Top Quark Physics

The top quark was discovered by the CDF and D@ experiments at the Fermilab
Tevatron in 1995 and is unique among the other known quarks:

m Lifetime of = 5 x 107% s (I's = 1.3 GeV), shorter than timescale associated with
hadronisation

m Top quarks decay before they form bound states (i.e. no “toponium”)

m Provides a unique opportunity to study the properties of a “bare” quark
Many interesting properties to study:

m Mass - why is it so much larger than the other quarks?

= Spin - is it consistent with the SM hypothesis of spin 1 (fermion)?

m Width and decays - very large phase space open for decay products (e.g. BSM
particles?)

m Couplings - in addition to gauge couplings, the top quark Yukawa coupling (ttH)
is expected to be ~ 1 (i.e. very large!)



Top Quark Production

m Top Pair Production: this is the dominant source of top quarks at the LHC,
proceeds entirely via strong interactions

m At the LHC, this process proceeds mainly via gluon-fusion (= 90%, left two
diagrams) and gg annihilation (= 10%, right diagram)

> T~

m Single top quark production: top quarks are also produced alone, in an
electroweak process, in association with other quarks and W bosons

m At the LHC, the t-channel (centre diagram) process is the dominant source of
single top quark production

q b ) g t
q q
w
” E | |
b
q ' 9 3 b W

All diagrams from Wikipedia



https://en.wikipedia.org/wiki/Top_quark

Top quark decays and tt final states

Figure: Nature 429, 638-642 (2004)

The decay t — Wh accounts almost the

entire top quark decay width Alljets 44%

m Other decays t — W{s, d} are
suppressed by very small CKM

elements and how not been observed T+jets 15%

directly

m Decays involving flavour changing 4T 1%
neutral currents (e.g. t — q{v, H}) s A
are very rare in the SM (loop e 1%

) . 2% Sy
suppressed) and highly susceptible to % ixintec |0

potential BSM contributions

e+jets 15%

From an experimental perspective, tt decays are often categorised in three classes,
determined by the W boson decays (all involve two b-jets):

m All-hadronic: Two hadronic (W — qg’) — up to six jets (44% of total)

m Semi-leptonic: One hadronic (W — qg’) and one leptonic (W — fv) — up to
four jets, one lepton and neutrino (45% of total)

m Di-leptonic: Two (W — qg’) — two jets, two leptons and two neutrinos (11% of
total)


https://www.nature.com/articles/nature02589

Example of di-leptonic tt event candidate %

Run: 267638
Event: 193690558
2015-06-13 23:52:26 CEST




Example of semi-leptonic tt event candidate %

Run: 266919
proton-proton collisions at Event: 19982211
13 TeV centre-of-mass energy 2015-06-04 00:21:24

EXPERIMENT




Principles of semi-leptonic tt event selection

Muon

» Segments in tracker
and muon detector

* Isolated track

Electron
» Good isolated calo object
* Matched to track

cs

muon+jets
tautjets

electron+jets

ud

| * Ex>20 GeV

- au+jets . 20 GeV

- [t moncst - Inlef0;1.37][1.52;2.47) 25

@ electron+jets

‘i,\?'“ e'lu' it ud c§ W |

W E miss
q - » Vector sum of calo
b energy deposits
a + Corrected for
b identified objects

Jet 7 (et v

+ Topological clusters

* Anti-k; (R=0.4)

» MC-based calibration
* pr> 25 (20) GeV
*I|n<25

+ Displaced tracks or
secondary lepton

» SVO0: reconstruct sec.vertex

« JetProb: track/jet compati-
bility with primary vertex

Event cleaning
» Good run conditions
* PV at least 5 tracks
+ Bad jet veto

» Cosmic veto (up)

Markus Cristinziani (Bonn) March 26™ , 2011 Top physics at ATLAS 4




Measurements of tt production |

ATLAS+CMS Preliminary
LHCtopwG o summary, Is = 13 TeV Nov 2020
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m tt cross-sections sensitive to NNPDF3.0 JHEP 04 (2015) 040
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CT14 PRD 93 (2016) 033006
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Measurements of tt production Il

E = I T T T | T T T | T T T T T T | T T T | T T L
o F v Tevatron combined 1.96 TeV (L<88fb?Y P .
= C o CMS dieptoni+jets 5.02 Tev (L=27.4pb”y ~ ATLAS+CMS Preliminary  Nov 2020 H
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NNLO+NNLL QCD theoretical predictions for tt production in agreement with
LHC and Tevatron measurements spanning order of magnitude in /s




Measurements of single top quark production

10?

10

TTTITT

Single top-quark cross-section [pb]

T T T
ATLAS Preliminary

Single top-quark production

T T T T I
Sep 2018

t-channel

. - === NLO+NNLL QCD atm, = 172.5 GeV-|
MSTW2008 NNLO PDF

=—— NLO QCD atm, =1725 GeV 7

MSTW2008 NLO PDF

s-channel

3 t-channel 4.59 fb™ PrD 90 (2014) 112006

$ t-channel 20.2 fb™ epsc77 (2017) 531

I t-channel 3.2 fb™ JHep 04 (2017) 086 ?
§ tW 2.05 fb™ pLe 716 (2012) 142 t
T twW 20.3 fb™ sHEP 01 (2016) 064

§ tW 3.2 fb™ sHEP 01 (2018) 063

v s-channel 95% CL limit 0.7 fb™ atLas-conF-2011-118
} s-clhannel 20.I3 o pLe 75|s (2016) 228 |

total
stat.

The cross-sections for single top quark production are at least an order of
magnitude lower than tt, but now firmly estblished by LHC measurements

8

9 10 11 13
Vs [TeV]

12

m Direct probe of | V| and sensitive to a variety of BSM models




surements of t

top quark mass

ATLAS+CMS Preliminary
LHClopwG

stat
total uncertainty

World comb. (Mar 2014)
ATLAS, I+jets

ATLAS, dilepton

ATLAS, alljets

ATLAS, single top
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s, alljets

CMS, single top

CMS comb. (Sep 2015)
CMS, I+jets
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s, alljets

World comb. (Mar 2014) [2]
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The top quark mass is an important parameter of the SM and also has
implications for our understanding of SSB and the Higgs sector

m Most precise measurements from the LHC offer O(100 MeV) precision, now more
precise than the Tevatron combination (174.30 + 0.65 GeV)
m “Which top mass is being measured?” becomes a relevant question (i.e. soft QCD
effects relevant at 100 MeV scale)
T



Summary

The physics available to study at the LHC is broad and very rich, spanning orders
of magnitude in terms of energy and coupling strength!

m Soft interactions at a hadron collider can never be ignored, it's essential that they
are well understood

m Jets are everywhere at the LHC, important background to any measurement or
search

m W and Z bosons are the primary source of isolated leptons

m The LHC produces a huge number of top quarks, now a major background to
many Higgs / BSM searches



