

Particle Astrophysics

SUSAN CARTWRIGHT UNIVERSITY OF SHEFFIELD

2

High energy particle astrophysics: the data

COSMIC RAYS PHOTONS NEUTRINOS EXPECTED RELATIONSHIPS BETWEEN OBSERVABLES

Cosmic rays

Cosmic rays were discovered about 1913 10^{-10} 10^{-8} 10^{-6} 10^{-4} 10^{-2} by Victor Hess.

- They consist mostly of protons and

heavier ions, and have a power law

spectrum with approximate spectral

index 2.7.

There are two conspicuous slope breaks,

the "knee" above 10° GeV and the

"ankle" above 10° GeV, and heavier ions, and have a power law spectrum with approximate spectral index 2.7.
	- There are two conspicuous slope breaks, the "knee" above 10⁶ GeV and the "ankle" above 10⁹ GeV, and an apparent cut-off around 10^{11} GeV. $\frac{2}{5}$

Cosmic rays do not point back to their origin because of deflection by the Galactic magnetic field.

Composition, rigidity and sources 4

4

For cosmic rays to be accelerated, they must be confined within the accelerating region.

- ▶ This can't be done by gravity—it must involve magnetic fields.
- \triangleright The response of a charged particle to a magnetic field is determined by its rigidity cp/q . **TA FD** Yakutsk R
- Therefore the maximum
 $\frac{5}{16} + \frac{1}{4} = \frac{1}{16}$ energy attainable in a given
source is higher for heavy ions $\frac{2}{3}$
than for protons. source is higher for heavy ions than for protons.

Increasing mean mass is a signature for a source type cutting off.

Cosmic ray origins

To identify the origins of cosmic rays we need a neutral messenger.

The possibilities are:

- **Photons, if produced by a non-thermal mechanism that requires the** presence of high-energy particles
	- \triangleright examples: synchrotron radiation, inverse Compton scattering, π^0 decay.
- **High-energy neutrinos**
	- \triangleright produced by π^{\pm} decay (much higher energy than solar or supernova neutrinos).

Photons may only signal the presence of high-energy electrons; neutrinos definitely require high-energy hadrons.

Photons: synchrotron radiation 8

Synchrotron radiation is produced by relativistic particles gyrating in a set of trajectory and part of trajectory magnetic field.

 \blacktriangleright Averaging over the pitch angle α , power emitted is

$$
P_{\text{rad}} = \frac{4}{3} c \sigma_{\text{T}} U_{\text{mag}} \beta^2 \gamma^2
$$

where $\sigma_{\text{T}} = \frac{e^4}{6\pi \epsilon_0^2 c^4 m_e^2}$ and $U_{\text{mag}} = \frac{B^2}{2\mu_0}$.

 \blacktriangleright The typical photon energy is $3.2L$ \cdots \cdots \cdots \cdots \cdots \cdots $\frac{3}{2}\gamma^2 h v_g \sin \alpha$ where $v_g = e B/(2\pi m)$.

6

Photons: inverse Compton scattering **Photons: inverse Compton, but** $\frac{1}{\sqrt{2}}$

scattering

A low-energy seed photon backscatters

of a high-energy electron.

• Power radiated is $P_{\text{rad}} = \frac{4}{3} \epsilon \sigma_T U_{\text{rad}} \beta^2 \gamma^2$ where $U_{\text{rad}} = S/c$ is $\frac{1}{2} \mathcal{W} \math$

A low-energy seed photon backscatters off a high-energy electron.

- Power radiated is $P_{\text{rad}} = \frac{4}{3} c \sigma_{\text{T}} U_{\text{rad}} \beta^2 \gamma^2$ where $U_{\text{rad}} = S/c$ is \mathscr{W} $\frac{4}{3}c\sigma_{\rm T}U_{\rm rad}\beta^2\gamma^2$ where $U_{\rm rad}=S/c$ is $\sqrt[1200]$ 19/03/2024

pton

ters y^2 where $U_{\text{rad}} = S/c$ is $\frac{1}{2}$

ere v_0 is the seed photon frequency.

argy is the same for both
 $y_1v_2 \gg v_3$. energy stored in radiation field
- \blacktriangleright Typical photon energy is $\frac{4}{3}\gamma^2h v_0$ where v_0 is the seed photon frequency.

The dependence on the electron energy is the same for both

-
- **In the relative normalisation depends on the magnetic field.**

Example: SNR RX J1713.7–3946

8

Fit to data using synchrotron radiation (dashed line) plus inverse Compton (solid line).

- Note that for a power-law electron
spectrum $N(E_e) \propto E_e^{-\delta}$ we expect a
synchrotron radiation spectrum synchrotron radiation spectrum $j_{\nu} \propto B^{(\delta+1)/2} \nu^{-(\delta-1)/2}$
- Because $P_{\text{rad}} \propto \gamma^2$ the electron power law will cut off at high energies owing to rapid energy loss in the high-energy tail, so expect similar cut-off in the photon spectrum, as seen.

The remnant of the supernova

-
- rved by Tycho Brahe in 1572.

Known to have been Type Ia from

reflected spectrum observed in 2008.

Shape of high-energy spectrum quite

different from the synchrotron \triangleright Shape of high-energy spectrum quite $\frac{10}{3}$ 10⁰ cers different from the synchrotron spectrum, so not inverse Compton.
-

Neutrino detection

High-energy neutrinos are detected by
observing neutrino interactions in large observing neutrino interactions in large

water Cherenkov detectors \triangleright currently the only one with a large enough active volume is IceCube, but it
will be joined by KM3NeT/ARCA. will be joined by KM3NeT/ARCA.

The principal problem is the background
from atmospheric neutrinos
by yery bigh-energy from atmospheric neutrinos

 \triangleright this means that only very high-energy $\frac{8}{10}$ -0.50 neutrinos can be identified as astrophysical on an event-by-event basis. In the Cube Coll., arxiv 2402.18026 [astro-ph.HE]

Example: TXS 0506+056 12

14

∗ AGN
◆ PWN

330

210

320

200

310

190

300

180

Expected correlations

High-energy neutrinos should be accompanied by high-energy photons, as $π[±]$ production should imply $π⁰$ production

 \triangleright but if the source region (or its surroundings) is very dense, the photons might not escape.

High energy photons from π^0 decays should be accompanied by neutrinos, for the same reason

 \triangleright but the neutrino signal may be too weak to see, or buried in the atmospheric neutrino background

Most acceleration mechanisms should accelerate all charged particles, so high-energy electrons should imply high-energy hadrons

but they might not, if the seed material is mostly e⁺e⁻ pair plasma (which it may be in some environments).

Summary

Cosmic rays, consisting primarily of protons and heavier ions, are

- \triangleright This implies the existence of extremely powerful astrophysical accelerators.
- Cosmic rays do not pinpoint these directly because their trajectories are deflected by the Galaxy's magnetic field.

Acceleration of hadrons should be accompanied by γ-ray and neutrino emission from pion decay, and of electrons by photons from synchrotron radiation (radio to X-rays) and inverse Compton (γ-rays).

- **In These are all seen, but a complete explanation is still lacking**
- in particular, the origins of astrophysical neutrinos are not yet established.

16