

High energy particle astrophysics: the data

COSMIC RAYS
PHOTONS
NEUTRINOS
EXPECTED RELATIONSHIPS BETWEEN OBSERVABLES

Composition, rigidity and sources For cosmic rays to be accelerated, they must be confined within the accelerating region. ▶ This can't be done by gravity—it must involve magnetic fields. ▶ The response of a charged particle to a magnetic field is determined by its rigidity cp/q. Auger FD Yakutsk R Tunka Ch Auger SD TALE FD LOFAR R Tunka R ▶ Therefore the maximum Yakutsk Ch energy attainable in a given $\langle \ln A \rangle$ source is higher for heavy ions than for protons. Increasing mean mass is a signature for a source type cutting off. Supanitsky, Galaxies 10 (2022)

Cosmic ray origins

To identify the origins of cosmic rays we need a neutral messenger.

The possibilities are:

- ▶ Photons, if produced by a non-thermal mechanism that requires the presence of high-energy particles
 - \blacktriangleright examples: synchrotron radiation, inverse Compton scattering, π^0 decay.
- High-energy neutrinos
 - \blacktriangleright produced by π^{\pm} decay (much higher energy than solar or supernova neutrinos).

Photons may only signal the presence of high-energy electrons; neutrinos definitely require high-energy hadrons.

Photons: synchrotron radiation

Synchrotron radiation is produced by relativistic particles gyrating in a magnetic field.

 \triangleright Averaging over the pitch angle α , power emitted is

$$\begin{split} P_{\rm rad} &= \frac{4}{3} c \sigma_{\rm T} U_{\rm mag} \beta^2 \gamma^2 \\ \text{where } \sigma_{\rm T} &= \frac{e^4}{6\pi \epsilon_0^2 c^4 m_e^2} \text{ and } U_{\rm mag} = \frac{B^2}{2\mu_0} \end{split}$$

▶ The typical photon energy is $\frac{3}{2}\gamma^2 h v_q \sin \alpha$ where $v_q = eB/(2\pi m)$.

Photons: inverse Compton scattering

7

A low-energy seed photon backscatters off a high-energy electron.

- Power radiated is $P_{\rm rad} = \frac{4}{3} c \sigma_{\rm T} U_{\rm rad} \beta^2 \gamma^2$ where $U_{\rm rad} = S/c$ is energy stored in radiation field
- ▶ Typical photon energy is $\frac{4}{3}\gamma^2h\nu_0$ where ν_0 is the seed photon frequency.

The dependence on the electron energy is the same for both synchrotron and inverse Compton, but $v_0 \gg v_q$.

- ▶ Therefore we expect the same shape of spectrum, but at higher energies.
- ▶ The relative normalisation depends on the magnetic field.

Example: SNR RX J1713.7-3946

8

Fit to data using synchrotron radiation (dashed line) plus inverse Compton (solid line).

- Note that for a power-law electron spectrum $N(E_e) \propto E_e^{-\delta}$ we expect a synchrotron radiation spectrum $j_{\nu} \propto B^{(\delta+1)/2} \nu^{-(\delta-1)/2}$.
- Because $P_{\rm rad} \propto \gamma^2$ the electron power law will cut off at high energies owing to rapid energy loss in the high-energy tail, so expect similar cut-off in the photon spectrum, as seen.

Observed photon energy spectrum is roughly $E^2 rac{\mathrm{d}N}{\mathrm{d}E} \propto E^{0.5} \Rightarrow j_{\nu} \propto \nu^{-0.5} \Rightarrow N(E_e) \propto E_e^{-2}$.

Photons and neutrinos: pion decay

9

Cosmic rays are predominantly protons, with some heavier nuclei.

High-energy protons colliding with ambient gas or photons will produce both π^{\pm} and π^{0} , and therefore ν_{μ} and photons.

- Muon decay will then produce more v_{μ} and v_{e} .
 - Oscillation will change the mix of flavours.
- The photon spectrum from π^0 decay differs from the inverse Compton spectrum, so we can distinguish cases where high-energy photon emission is dominated by pion decay.

There is no realistic way to produce a detectable neutrino flux without high-energy hadrons.

Example: Tycho's supernova

10

The remnant of the supernova observed by Tycho Brahe in 1572.

- Known to have been Type Ia from reflected spectrum observed in 2008.
- Shape of high-energy spectrum quite different from the synchrotron spectrum, so not inverse Compton.
- ▶ Can be well fitted by π^0 decay.

Expected correlations

13

High-energy neutrinos should be accompanied by high-energy photons, as π^{\pm} production should imply π^{0} production

but if the source region (or its surroundings) is very dense, the photons might not escape.

High energy photons from π^0 decays should be accompanied by neutrinos, for the same reason

but the neutrino signal may be too weak to see, or buried in the atmospheric neutrino background

Most acceleration mechanisms should accelerate all charged particles, so high-energy electrons should imply high-energy hadrons

but they might not, if the seed material is mostly e⁺e[−] pair plasma (which it may be in some environments).

S. Abdollahi et al ApJS **247** (2020) 33

Photon sources

High-energy photon sources in our Galaxy are mainly pulsars and supernova remnants.

Extragalactic sources are mainly blazars.

In addition, there are also transient sources of MeV yrays, i.e. gamma-ray bursts (GRBs).

Summary

16

Cosmic rays, consisting primarily of protons and heavier ions, are observed to have a power-law energy epctrun extending out to $\sim 10^{20}$ eV.

- ▶ This implies the existence of extremely powerful astrophysical accelerators.
- Cosmic rays do not pinpoint these directly because their trajectories are deflected by the Galaxy's magnetic field.

Acceleration of hadrons should be accompanied by γ -ray and neutrino emission from pion decay, and of electrons by photons from synchrotron radiation (radio to X-rays) and inverse Compton (γ -rays).

- ▶ These are all seen, but a complete explanation is still lacking
- in particular, the origins of astrophysical neutrinos are not yet established.