

Lecture 4

To Infinity and Beyond!

Question : What would you observe if you were able to know what mass state propagated from source to detector?

Question : What would you observe if you were able to know what mass state propagated from source to detector?

$$
\text{Prob}(v_{\alpha} \rightarrow v_{\beta}) \propto \left| \sum_{i} U_{\alpha i}^{*} \text{Prop}(v_{i}) U_{\beta i} \right|^{2}
$$

Question : What would you observe if you were able to know what mass state propagated from source to detector?

$$
\text{Prob}(v_{\alpha} \rightarrow v_{\beta}) \propto \sum_{i} |U_{\alpha i}^{*} \text{Prop}(v_{i}) U_{\beta i}|^{2} \rightarrow \sum_{i} |U_{\alpha i}^{2}||U_{\beta i}|^{2}
$$

The Prop term is just a phase rotation so vanishes

 \blacktriangleright The probability is now a constant – there is flavour change if mixing can still happen – but now the oscillation has vanished, as the interference between mass states no longer exists…

The Quest

Normal or Inverted mass heirarchy?

Better estimates of the oscillation parameters using accelerators \cdot Is θ_{23} maximal? **Is the neutrino Majorana?** What is the absolute mass?

Current Experiments

Next generation

DUSEL Underground Neutrino Experiment (DUNE)

Hyper-Kamiokande 300 km baseline

SK (to scale'ish)

MW beams multi-kton far detectors

DUNE in the USA

DUNE operates a wide-band beam

Comparison of the peaks of the first AND second oscillation maxima can be used to measure the mass ordering and δ_{CP}

DUNE Far Detector

DUNE Far Detector

Hyper-Kamiokande

Three detectors: EXALLE Far Detector Upgraded Near detector New "Intermediate" detector

FarDet complete : 2028 **Beam upgrades** complete : 2028 First data : 2028-2029

Construction through to 2028'ish **Hyper-K : 200 kton**

Super-K : 25 kton water

Dune / HK Comparison

CP violation and the Mass Hierarchy

Measuring δ_{CP} is the ultimate goal of neutrino oscillation experiments. How? δ_{CP} shows up in the imaginary part of the PMNS matrix.

$$
Prob(v_{\alpha} \rightarrow v_{\beta}) = \delta_{\alpha \beta} - 4 \sum_{i > j} \Re(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*}) sin^{2}(\Delta m_{ij}^{2} \frac{L}{4E})
$$

$$
\underbrace{\left(+2 \sum_{i > j} \Im(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*}) sin(\Delta m_{ij}^{2} \frac{L}{2E})\right)}_{\equiv 0 \text{ if } \alpha = \beta}
$$

CP violation can only take place in appearance experiments

$$
\text{Look for } P(\nu_{\mu} \rightarrow \nu_{e}) \neq P(\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}})
$$

In all it's naked glory
\n
$$
P(v_{\mu}(\overline{v_{\mu}}) \rightarrow v_{e}(\overline{v_{e}})) = P_{1} + P_{2} + P_{3} + P_{4}
$$
\n
$$
P_{1} = \sin^{2} \theta_{23} \frac{\sin^{2} 2 \theta_{13} \left(\frac{\Delta_{13}}{B_{+}}\right)^{2} \sin^{2} (\frac{B_{+}}{2}L)}{\left(\frac{\Delta_{12}}{B_{+}}\right)^{2} \sin^{2} (\frac{B_{+}}{2}L)}
$$
\n
$$
P_{2} = \cos^{2} \theta_{23} \sin^{2} 2 \theta_{12} \left(\frac{\Delta_{12}}{A}\right)^{2} \sin^{2} (\frac{A}{2}L)
$$
\n
$$
P_{3} = \underline{J} \cos \delta \cos (\frac{\Delta_{23}}{2}L) (\frac{\Delta_{12}}{A} \frac{\Delta_{13}}{B_{+}}) \sin (\frac{A}{2}L) \sin (\frac{B_{+}}{2}L)
$$
\n
$$
P_{4} = \underline{+J} \sin \delta \sin (\frac{\Delta_{23}}{2}L) (\frac{\Delta_{12}}{A} \frac{\Delta_{13}}{B_{+}}) \sin (\frac{A}{2}L) \sin (\frac{B_{+}}{2}L)
$$
\n
$$
\Delta_{\eta} = \frac{\Delta m_{ij}^{2}}{2E} \frac{A = \sqrt{2}G_{F}N_{e}}{B_{+}} \qquad J = \cos \theta_{13} \sin 2 \theta_{12} \sin 2 \theta_{23} \sin 2 \theta_{13}
$$

Degeneracies

Experiments only measure at most two numbers; but probability has three unknowns and parameters with errors.

Need more than one measurement at different L/E to disentangle the parameter space

Degeneracies

Experiments only measure at most two numbers; but probability has three unknowns and parameters with errors.

Need more than one measurement at different L/E to disentangle the parameter space

Mass Hierarchy measurements

As baseline grows, matter effects increase

At distances of around 1000 km we can unambiguously identify the mass hierarchy

Once we've done that we need to determine CP phase

JUNO

Neutrino source: 26.6 GW_{th} from nuclear reactors

Experiment location: Jiangmen, China Baseline: 53km

Main detector technology: Liquid

Scintillator

Current Status: Under construction

Largest liquid scintillator detector ever build \blacksquare Data taking to begin this year

Q JUNO will measure \bar{v}_e from Yangjiang and Taishan power plants

Main goal: Neutrino Mass ordering □

- Simultaneous measurement of Δm^2_{31} and Δm^2_{32}
- Independent of δCP and octant of θ_{23}
	- 6 years operation to determine mass hierarchy at 3σ

Hints of δ_{CP} ? T2K & NOvA

Normal ordering weakly favoured

- \triangleright δ_{CP}= 0 disfavoured at 2σ
- $\geq \delta_{CP}$ > 0 disfavoured at 3 σ

Best fit: Normal hierarchy favoured at 1.8 σ

Excludes δ_{CP} = π / 2 in the inverted hierarchy at > 3 σ

Slight tension

Experiments are complementary : different baselines and energies mean that size of the mass ordering and δ CP effects are different

A combined fit of T2K and NOVA data is in the works.

Future project sensitivities

δ_{CP} : DUNE Sensitivity

 $>$ 5 σ reach after 7 years of running over entire δ_{CP} range > 5 σ reach after 10 years if $δ_{CP}$ exists in $±[0.2-0.8]$ π

$HK \delta_{CP}$ Sensitivity

A return to $0\nu\beta\beta$ decay $m₂$

 $m₁$

 $m₃$

$$
\Gamma\left(0 \vee \beta \beta\right) \propto \left|\left\langle m_{v_e}\right\rangle\right|^2 = \left|\sum_i |U_{ei}^2| m_i e^{i \phi_i}\right|^2
$$

In the inverted ordering: $m_3 < < m_1 \approx m_2$, $\Delta m_{13}^2 \approx \Delta m_{23}^2$ and m_3 is the lightest mass state, so we can write

$$
m_{v_e}^2 = ||U_{e1}|^2 \sqrt{m_3^2 + \Delta m_{23}^2} + |U_{e2}|^2 e^{i\alpha_2} \sqrt{m_3^2 + \Delta m_{23}^2} + |U_{e3}|^2 e^{i\alpha_3} m_3^2||^2
$$

Setting m_3 to zero (not a bad approximation) one can show that

$$
m_{v_e} > \sqrt{\Delta m_{23}^2 \cos^2 \theta_{13} (1 - 2 \sin^2 \theta_{12})}
$$

i.e for the inverted hierarchy, the average electron neutrino mass would have a *lower limit at small m³*

Mass hierarchy $\&$ 0 $v\beta\beta$ decay

Experimental limit needs to decrease by a factor of 10 \blacktriangleright Limit scales with mass and run time **Experiments** need to be 10 times bigger and run 10 times longer **These are being** built now.

Exp. sensitivities

Mass Hierarchy Determination

A number of different experiments, both accelerator and 0nbb decay focused, are now trying to determine the mass hierarchy.

Timescale : ~ 5 years from now for 4 σ good indication from NOVA + T2K + JUNO

Measurement of δ_{CP}

Next generation of experiments are being planned to measure this

Timescale : 6-8 years from now (including 5 for construction) for 3σ sensitivity to distinguish from no CP-violation scenario (if true δ_{CP} is π/2). 15-20 years for a measurement of δ_{CP} to a

precision of 20° (if true δ_{CP} is $\pi/2$).

The Roadmap - 2005

We are at the beginning of a global coordinated effort to unravel the neutrino sector

> Measure 23 sector to 10% MINOS, K2K, OPERA, miniBoone

Measure θ_{13} ; Probably need 2 measurements at different L/E and an antineutrino measurement to unravel ambiguities. T2K/NOvA, Reactor experiments

Now

2009

Precision measurements of all parameters Phase 2 Superbeams, β beams,

Neutrino Factories

The next 20 years - 2009

The next 20 years $-$ 2009 $\frac{1}{N+$ K

The next 20 years $-$ 2024 v

ANOMALIES

ANOMALIES EVERYWHERE

LIGHTYEA

Reactor Antineutrino Anomaly (RAA)

• Gallium Anomaly

The Gallium Anomaly

We've discussed the Homestake experiment which studied

$$
v_e + Cl^{37} \rightarrow Ar^{37} + e^-
$$

A couple of experiments (SAGE and GALLEX) also studied

 $v_e + {}^{71}Ga \rightarrow {}^{71}Ge + e^-$

In early 2000's the response of GALLEX was being tested using MCi radioactive sources.

Sources emitted v_e which were then observed using the standard Ge signature

 $L/E \approx 0.1 \, m/0.1 \, MeV \rightarrow \Delta m^2 \approx 1 \, eV^2$

(or is it our understanding of the low energy ν-Ga cross section, or is it just bad luck?)

The reactor anomalies

pre-2011 : measurement of the total neutrino flux from reactors agreed with expectation.

In 2011, new techniques in modelling nuclear reactions led to a re-evaluation of the expected electron antineutrino flux. The new estimate was about 6% **higher** than the old.

Suddenly all the experiments now observed a general **deficit** of electron antineutrinos being detected at the detector

$$
N(\overline{\mathbf{v}}_e) = \Phi^{\text{old}}(\overline{\mathbf{v}}_e) \sigma \longrightarrow \Phi^{\text{new}}(\overline{\mathbf{v}}_e) \sigma \times P(\overline{\mathbf{v}}_e \rightarrow \mathbf{v}_s)
$$

Could this be (i) the new flux estimate is just a bit dodgy or (ii) we have short baseline neutrino oscillations to a sterile state?

Reactor Anomaly

Deficit consistent with a sterile state with $\Delta m^2 \sim 1.5 \text{ eV}^2$ Reactor antineutrino flux calculations are VERY hard to do It's almost certain that this is an issue with the calculation of the antineutrino flux NOT steriles.

The Bump

Overall there is a deficit of events with the new reactor flux estimates

- Between 4-6 GeV there seems to be an excess beyond the flux errors
- Seen in all reactor experiments
- This is quite hard to explain away using sterile neutrinos!
- \triangleright Prejudice is that this is due to modelling reactor flux

New fluxes - again

Reactor flux deficit has probably gone away now

> "New" 2011 flux overestimated the flux from U-235

New flux measurements suggest that the reactor flux deficit was not real

Reactor Experiments

Installed on a moveable platform under a 3 GW reactor Large neutrino flux Variable source-distance distance using the same detector Down : 12.7 m from reactor

Up : 10.7 m from reactor

Reactor Experiments

DANSS (2020) No visible effect

Neutrino4 (2020) Claimed signal

Situation unclear : other experiments (Stereo, SoLiD, Prospect) don't see oscillations like this.

LSND

The LSND experiment was the first accelerator experiment to report a positive appearance signal

LSND Result (1997)

3.3 σ evidence for

 $87.9 \pm 22.4 \pm 6$ excess events from $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$

MiniBooNE

DOM:

Ran from 2002 to 2014 at Fermilab

Average neutrino energy ≈ 1 GeV

- L/E the same as LSND
- Same technology as LSND

 \bullet Different energy = different event types = different systematics

miniBooNE Results

Excess at the level of 4.8 σ

Neutrino + Anti-Neutrino Mode $(\Delta m^2, \sin^2 2\theta) = (0.043 \text{ eV}^2, 0.807)$ χ^2 /*ndf* = 21.7/15.5 (prob = 12.3%)

MicroBooNE

▶ 170 ton LAr TPC **Dearating in the same** beam as LSND and miniBooNE Capable of reconstructing electrons and photons

Low Energy Excess

Reconstructed energy spectrum for inclusive v_{e} event sample

No sign of excess of low energy electrons or photons.

 \geq ?????

LSND/MiniBoone are seeing something though. What?

Doesn't rule out steriles though.

Decaying sterile neutrinos?

CPT Violation?

3+1 sterile? 3+2 ? 3+n ?

Lorentz violation?

Extra dimensions?

Experimental problems?

No bleedin' idea

Wait for more data

Global analysis

It's very hard to fit all of the data to a $3+1$ (or other) models.

A consistent picture does not leap out from all these anomalies.

SBN Program

SBND

SBND

v_e appearance

ν_μ disappearance

• SBN cover much of the parameters allowed by past anomalies at >50 significance

Starts taking data soon

Neutrino Cross-sections

Systematic Uncertainties

Neutrino Interactions

Xsec data pre 2007

The data was impressively imprecise

World Data for Antineutrinos

It's slowly getting better

True p. (GeV)

0.6

True p (GeV)

1 1.2 1.4
True p (GeV)

CC 0π differential Xsec from T2K arXiv:1602.03652

CC π^0 differential xsec from MINERvA Phys.Lett. B749 (2015) 130-136

Lot's of effort going into trying to understand neutrino interaction cross sections

But still not good

Total proton kinetic energy

D Ruterbories et al. Simultaneous measurement of proton and lepton kinematics in quasielasticlike ν µ-hydrocarbon interactions from 2 to 20 gev. Physical review letters, 129(2):021803, 2022.

Concluding Remarks

 \triangleright Neutrinos are massive \rightarrow extensions needed to the Standard Model

Neutrino oscillation parameters still need to better measured; δ_{CP} and ordering have to be measured.

Next generation of experiments will hopefully get a handle on these parameters : data coming from 2029 and the early 2030's.

Many opportunities for BSM in the neutrino sector

Ne are getting perilously close to a neutrino mass measurement – perhaps in the next 5-10 years?

Majorana or Dirac? We may be lucky with an intensive 0νββ program; look out for LEGEND 1000

New neutrino machines may be coming with muon storage ring technology

Quasi-Elastic Scattering

- **D** Usually though of as a single nucleon knock-on process
- In the past has been used as a "standard candle" to normalise other cross sections
- Heavily studied in the 1970's and 1980's and considered to be "understood"

E^ν*;rec* $=\frac{2(m_N - E_B)E_{\mu}-(E_B^2 - 2m_N E_B + m_{\mu}^2)}{2(m_N - E_B)^2}$ $2(m_N - E_B - E_\mu + |p_\mu|\cos\theta_\mu)$ II. Energy reconstruction is unbiased assuming 2 body kinematics

quasi-deuteron

Short-range correlations (SRC)

Meson Exchange Currents (MEC)

2p2h processes - medium to high Q^2

RPA effects W polarisation changes strength of weak interaction

Effect of nuclear corrections WARWI

\triangleright Models change Q² shape in different regions

Models add a new channel which increases the total cross section

Effect on energy reconstruction

Final State Interactions

In the nuclear medium

Final State Interactions

In the nuclear medium

Outgoing protons can **Scatter Lose energy**

- Outgoing pions can **Scatter** be absorbed
	- create more pions
	- charge exchange

We tend to categorise events by their final state content now rather than their theoretical "label"