8th Red LHC Workshop 28 – 30 May 2024 @ U. Complutense (Madrid)

Early top quark measurements with Run3 data by the CMS experiment

Barbara Alvarez Gonzalez on behalf of the CMS Collaboration

Universidad de Oviedo

EUROPEAN UNION

European Regional Development Fund

Grant PID2020-113341RB-100 funded by

MINISTERIO DE CIENCIA E INNOVACIÓN

LHC Run3 Data

- During Run 3 the LHC is expected to run at higher instantaneous luminosity
 - Achieved by increasing the number of interactions per bunch crossing
- Harder conditions:
 - Higher rate of background
 - Increased of pile-up
- Higher rate of interesting events but more challenging to identify signal events

LHC Run2 v Run3 Instantaneous Luminosity

Data included from 2015-06-03 08:41 to 2018-10-26 08:23 UTC

Run3 data-taking started at the maximum values of inst. luminosity reached at **Run2**

CMS and ATLAS Run3 Publications/Public Notes

CMS

ttbar cross section <u>JHEP 08 (2023) 204</u> LLPs decaying to final states with a pair of

muons <u>JHEP 05 (2024) 047</u>

- tW inclusive and differential cross section <u>CMS-PAS-TOP-23-008</u>
- W⁺W⁻ inclusive and differential
 - Inclusive cross section of Z boson production <u>CMS-PAS-SMP-22-017</u>
 - Low-mass LLPs decaying to displaced jets <u>CMS-PAS-EXO-23-013</u>
 - Luminosity measurement in proton- proton collisions in 2022 at CMS <u>CMS-PAS-LUM-22-001</u>
 - Development of the CMS detector for the CERN LHC Run 3 <u>JINST 19 P05064</u>

ATLAS

- The ATLAS detector for the LHC Run-3 Accepted by JINST
- H \rightarrow yy and H \rightarrow ZZ \rightarrow 4l cross sections <u>Eur.</u> <u>Phys. J. C 84 (2024) 78</u>
- Measurement of tt cross section and tt/Z cross section ratio <u>Phys. Let. B 848</u> (2024) 138376
- Measurement of ZZ production cross sections in the four-lepton final state Submitted to PLB
- Measurement of vector boson production cross sections and their ratios Accepted by PLB
- Few more on performance, computing... (full list on back-up)

Motivation and Introduction

- Top quarks keep playing a key role on LHC physics
 - The most massive elementary particle
 - Relevant for EWK symmetry breaking
- Top quarks are produced in abundance at the LHC
- Dominant production modes:
 - **Pair (tt) production** via **QCD interactions**: ~10 Hz for 13.6 TeV
 - Single production via EW interactions:~1 Hz for 13.6 TeV
- This talk focuses on:
 - tt inclusive cross section JHEP 08 (2023) 204
 - tW inclusive and differential cross section <u>CMS-PAS-TOP-23-008</u>
 - Extra: WZ analysis on-going

top-antitop (tt)

Reference: Top++v2.0 program (M.Czakon, A. Mitov, Comput.Phys.Commun. 185 (2014) 2930)

√s	$\sigma_{\rm tt^-}$ (NNLO + NNLL)	
13 TeV	$833.9^{+29.4}_{-36.6}$ pb (4.4%)	
13.6 TeV	$923.6^{+32.1}_{-40.4}$ pb (4.4%)	71% Increase

tt at 13.6 TeV

JHEP 08 (2023) 204

- Early measurement: Data from 27 July to 03 August 2022 \Rightarrow 1.21 fb⁻¹
- Combined analysis:
 - Dilepton (eµ, ee, µµ) and lepton+jets (e+jets, µ+jets) channels
- Event categories: lepton number & flavor, N_i, N_b (shown in next slide)

- A maximum likelihood fit is performed in event categories after Z+jets and QCD normalization corrections from side-band regions
- A cut-and-count analysis is also performed

tt at 13.6 TeV

JHEP 08 (2023) 204

Source	Uncertainty (%
Lepton ID efficiencies	1.6
Trigger efficiency	0.3
JES	0.7
b tagging efficiency	1.1
Pileup reweighting	0.5
ME scale, tī	0.6
ME scale, background	ls 0.1
ME/PS matching	0.1
PS scales	0.3
PDF and $\alpha_{\rm S}$	0.3
Single t background	1.0
Z+jets background	0.3
W+jets background	0.0
Diboson background	0.5
QCD multijet backgro	ound 0.3
Statistical uncertainty	0.5
Combined uncertainty	y 2.6
Integrated luminosity	2.3
· · ·	

 $\sigma_{ ext{t}ar{ ext{t}}} = 882 \pm 23 \, (ext{stat+syst}) \pm 20 \, (ext{lumi}) \, ext{pb} \, \, \sigma_{ ext{t}ar{ ext{t}}}^{ ext{C\&C}} = 888 \pm 34 \, (ext{stat+syst}) \pm 20 \, (ext{lumi}) \, ext{pb}$

- Lepton ID efficiencies: from T&P method from Z+jets events plus extrapolation factor
- **b tagging efficiencies:** free fit parameter, constrained from using N_b = 0,1,2 categories

tW at 13.6 TeV

CMS-PAS-TOP-23-008

First measurement of the tW process at 13.6 TeV using the full 2022 dataset with 34.7 fb⁻¹

- Measure the inclusive cross section of tW
- Measure the differential cross sections as a function of several observables
- Main challenges:
 - Irreducible tt background largely dominates signal contribution
 - **NLO** interference between tW and tt (*DR and DS samples*)
- Event selection:
 - $e^{\pm}\mu^{\mp}$: the two leading leptons must be an electron and a muon of opposite charge (OSOF)
 - Leading lepton p_T > 25 GeV and subleading lepton p_T >20 GeV
 - All lepton pairs must satisfy m(l1, l2) > 20 GeV

tW inclusive cross section at 13.6 TeV

- To discriminate between tW and tt events, two Random Forest (RF), in the 1j1b and 2j1b regions are trained using the kinematic properties of the events
- ML fit performed to extract the signal using the two RFs and the subleading jet p_T (2j2b)

CMS-PAS-TOP-23-008

tW differential cross section at 13.6 TeV

- Measurement performed in the 1j1b region vetoing events with low energy jets (loose jets)
- Signal extraction is performed by background subtraction
- Unfolding from detector level to particle level is performed using TUnfold (JINST 7 (2012) T10003)
- Measure the following 6 observables (all in back-up):
 - \circ p_T of the leading lepton and of the jet
 - $\circ \quad \Delta \phi(e, \mu)$
 - $\circ \quad p_z(e, \mu, jet)$
 - \circ $\tilde{m}(e, \mu, jet)$
 - $\circ m_T(e, \mu, jet, p_T^{miss})$
- Results normalized to fiducial cross section
- Compared unfolder data with predictions:
 - POWHEG (PH) vs MADGRAPH5_aMC@NLO (aMC)

CMS-PAS-TOP-23-008

- PYTHIA8 (P8) vs HERWIG7 (H7)
- Different schemes to treat the tW and tt interference

Results

On-going: WZ cross section at 13.6 TeV

a'

eee

eeμ

μμε

μμμ

- Working on measuring WZ cross section at 13.6 TeV
- **Three-lepton analysis:**
 - eee, eeµ, µµe, µµµ Ο
- Very clean final state
- Aiming for a similar precision of Run2 (JHEP 07 (2022) 032): CMS
 - ~4% level 0
- Compare with high order predictions:
 - POWHEG at NLO in QCD Ο
 - MATRIX at NNLO in QCD Ο

Summary

- Successful Run3 data-taking
- Precision measurements performed to keep testing SM accuracy and as a window the new physics
- Differential and fiducial measurements are key inputs to improve MC modeling

8th Red LHC Workshop 28 – 30 May 2024 @ U. Complutense (Madrid)

BACK-UP SLIDES

ATLAS Run 3 Publications

ATLAS Google Project: Total Cost of Ownership NEW		Submitted to CSBS	2024-05-22	13.6		Documents Internal
Run 3 Software and Computing		Submitted to EPJC	2024-04-09	13.6		Documents 2404.06335
Measurement of vector boson production cross sections and their ratios		Accepted by PLB	2024-03-19	13.6	29 fb ⁻¹	Documents 2403.12902 Inspire Briefing Internal
Performance of the ATLAS Trigger System in 2022	TRIG	Submitted to JINST	2024-01-12	13.6	30 fb ⁻¹	Documents 2401.06630
Measurement of ZZ production cross-sections in the four-lepton final state	STDM	Submitted to PLB	2023-11-16	13.6	29 fb ⁻¹	Documents 2311.09715 Inspire HepData Internal
Track reconstruction software performance in Run 3	IDTR	Comput Softw Big Sci 8, 9 (2024)	2023-08-18	13.6		Documents 2308.09471 Inspire Internal
Measurement of tt cross-section and tt/Z cross-section ratio at $sqrt(s) = 13.6$ TeV	TOPQ	Phys. Let. B 848 (2024) 138376	2023-08-18	13.6	29 fb ⁻¹	Documents 2308.09529 Inspire HepData Internal
$H \rightarrow yy$ and $H \rightarrow ZZ \rightarrow 4I$ cross-sections at sqrt(s) = 13.6 TeV	HIGG	Eur. Phys. J. C 84 (2024) 78	2023-06-20	13.6	29 fb ⁻¹	Documents 2306.11379 Inspire Internal
Fast b-jet identification algorithms in the ATLAS High Level Trigger for LHC Run 3		JINST 18 (2023) 001 P11006	2023-06-16	13.6	6.3 fb ⁻¹	Documents 2306.09738 Inspire Internal
The ATLAS detector for the LHC Run-3		Accepted by JINST	2023-05-26	13.6		Documents 2305.16623

tW differential cross section at 13.6 TeV

