Measurement of the top-quark mass with the ATLAS experiment in 13 TeV pp collision data.

28th May 2024

Javier Jiménez Peña

Institut de Física d'Altes Energíes (IFAE)

Institut de Física d'Altes Energies

The top-quark mass

- The top quark is the heaviest known particle.
- Very short life time $(T_{top} = 0.5*10^{-24} \text{ s})$ and decays before hadronisation $(T^{had} \sim 10^{-23} \text{ s})$.
- Unique possibility to study "free-quark" properties: mass, width, spin, production asymmetries, entanglement...

The top-quark mass is a free parameter of the SM that need to be determined experimentally with important implications:

- Self consistency test of the SM together with Higgs and W bosons masses.
- Stability of the electroweak vacuum: topquark radiative corrections may drive the Higgs self coupling to negative values.

Measurements of the top-quark mass

Direct measurements (focus of the talk)

- Target the MC top-quark mass, the parameter of the MC generator.
- Based on partial kinematic reconstruction of decay products from the top-quark.
- Manages to achieve great precision: Uncertainty below GeV in several measurements.
- Not directly comparable to the pole mass or other schemes.
- Recent measurement from CMS reaches a total uncertainty of 0.37 GeV: arXiv:2302.01967
- The latest combination of ATLAS and CMS measurements from Run-1 reaches a total uncertainty of 0.33 GeV: arXiv:2402.08713

Indirect measurements

- Target the a well defined mass scheme like the pole mass
- Based on inclusive or differential cross-section predictions (as a function of m_{top})
- Typically achieve worse precision than direct measurements, but improving.

arXiv:2402.08713

Combination of Run-1 ATLAS/CMS measurements

m₊ = 172.52 ± 0.14 (stat) ± 0.30 (syst) GeV = **172.52 ± 0.33 GeV**

Measurement of the top-quark mass in $t\bar{t} \rightarrow$ dilepton events with the ATLAS experiment using the template method in 13 TeV *pp* collision data

Template method: Basic idea

1) Build an observable with sensitivity to the top-quark mass.

- Example: reconstructed lepton/b-jet pair invariant mass
- 2) Simulate multiple signal samples with varied values of the top-quark mass.
- 3) Produce templates parametrizing the observable shape as a function of m_{top}.
- 4) Perform an unbinned maximum-likelihood fit to data to extract the top-quark mass.

Extra steps:

- Systematic uncertainties are calculated by fitting systematically varied samples with the nominal templates and measuring the shift in the extracted value of m_{top}
- Additional templates are derived for background sources.

Dilepton template method

- ATLAS Run-1 most precise single measurement : m_{top} = 172.99 ± 0.41 (stat) ± 0.74 (sys) GeV
- Main systematics: JES, bJES and data statistics.
- Events reconstructed with MinAvg algorithm.
- Uses **average m**_{lb}^{reco} to extract top-quark mass.
- Reduced total uncertainty by cut in $p_T^{lb} > 120 \text{ GeV}$.

New measurement at 13 TeV:

- Larger dataset (7x luminosity, XS++)
- Reconstruction of events improved by the use of a Deep Neural Network (DNN).
- Only the best reconstructed lepton/b-jet pair is used in the measurement: m_{lb}^{High}.
- Cut harder on the transverse momenta of lepton/b-jet pair: from 120 to 160 GeV.

Selection in a nutshell:

- Single-electron or a single-muon trigger. Exactly two OS leptons of p_{T} > 28 GeV
- Exactly two b-tagged jets of $p_T > 25$ GeV. Avoid Z and DY with m_{μ} . No MET.

ATLAS-CONF-2022-058

Event reconstruction

- A DNN has been trained to select the correct pairing of lepton/b-jets.
- Permutation choice dependent variables are used: ΔR_{lb} , m_{lb} , p_T^{lb}
- The permutation with the highest DNN score, DNN_{High} , is selected.
- High reconstruction efficiency (88%) and improved resolution in m_{lb}
- DNN_{High}: discriminant between well reconstructed events and background.

ATLAS-CONF-2022-058

9

Selection optimization

Only the lepton/b-jet pair with the largest transverse momentum is used to measure the top quark mass.

- Higher reconstruction efficiency (~97%)
- Reduced systematic uncertainties.
- DNN_{High} > 0.65, p_T^{lb} > 160 GeV
- Selected b-jet has the largest p_τ

+

ATLAS-CONF-2022-058

Event final selection

Good data/MC before and after final selection: Data/MC event yields within 10±6%

11

Extraction of top quark mass

- Measurement observable is \mathbf{m}_{lb}^{High} : invariant mass of the lb-pair with the largest p_{T}^{lb} .
- **m**_{Ib}^{High} fitted in the range between 50 and 140 GeV: reduced systematic sensitivity.
- Templates are derived from ttbar and single top samples simulated with different values of m_{top} and parametrized: The final template fit only depends on m_{top}.
- Systematic uncertainties are evaluated by fitting each varied sample.

Final result and leading uncertainties

The top quark mass is measured in the dilepton channel using the lepton/b-jet invariant mass with a total **uncertainty of 0.80 GeV**.

Leading uncertainties are:

- The Matrix-element matching. (0.40 GeV)
- The recoil scheme (0.39 GeV) New
- The Jet Energy Scale. (0.37 GeV)
- The colour reconnection. (0.27 GeV)
- Data statistics (0.20 GeV)
- Initial and final state radiation (0.20 GeV)

$$m_{\text{top}}^{\text{dilepton}} = 172.21 \pm 0.20 \,(\text{stat}) \pm 0.67 \,(\text{syst}) \pm 0.39 \,(\text{recoil}) \,\text{GeV}.$$

Modelling = 0.65 GeV, detector = 0.43 GeV

Current measurement limited by signal modelling.

Signal modelling uncertainties:

Recent developments

Improving matching uncertainty

Top-quark processes modeled in ATLAS by matching:

- Hard-scatter matrix element (ME) calculations of NLO MC generators
- Parton shower generator (PS).
- Ex: Powheg+Pythia

Uncertainty traditional comparing two generator setups.

• Ex: Powheg+Pythia Vs aMC@NLO+Pythia.

Powheg and Pythia: order of emissions is handled by a variable related to p_T of the emissions called "hardness" or pThard.

- Double counting avoided by vetoing PS emissions in the phase space covered by Powheg.
- Differences in the "hardness" definition can introduce double counting or not covered regions.

New uncertainty treatment: comparison of two pThard definitions:

- --- pThard-0: The Powheg definition value.
- - **pThard-1**: The p_{τ} of the Powheg emission.

Improving matching uncertainty

Two additional effects considered as an uncertainty:

Top quark lineshape

Decay of the top-quark is based on the narrow width approximation with a smearing of a Breit-Wigner followed by momentum reshuffling.

Two different ways of doing this are implemented in PowhegBox and MadSpin

Top-quark p_{T} mis-modelling

Observed mis-modelling due to absence of higher-order corrections that would soften the top-quark p_{τ} spectrum.

A reweighted (using weights from a NNLO calculation) nominal sample can be used to access a system uncertainty and/or to get the prediction in agreement with the data.

Radiation and recoil effects

First emission of a gluon (g_1) in the final state is controlled with NLO matrix element corrections (MEC). Second emission (g_2) is not: ambiguity in the treatment.

- Recoil-to-Colour=ON: Any gluon radiation after the FE recoils against the b-quark.
- Recoil-to-Colour=OFF : W boson is the recoiler. Too much radiation along W direction.
- Recoil-to-Top. New scheme allows the top to be the recoiler. Suppresses radiation in W hemisphere.

All these schemes vary the amount of out-of-cone radiation, and the W/b momentum fraction, what translates into a shift of the inferred m_{top} .

- ATLAS has added recoil-to-top vs recoil-to-colour=ON as an additional uncertainty.
- No dedicated tuning of the recoil-to-top has been performed yet. Current uncertainties probably overestimate the effect.

LHC Top WG

P. Skands

• Next steps: Implement Vincia in ATLAS. Better description of shower model.

Non-resonant and off-shell effects: bb4l

- Final states of ttbar and Wt+b production are identical.
- Traditionally, they are produced individually and the interference is handled through diagram removal.
- A new bb4l NLO generator targets the bb4l final state, better describing the ttbar/Wt interference.
- Also off-shell effects and non-resonant production.
- Plans to use bb4l as nominal generator in the future.

• In the most recent dilepton template method:

$$\Delta m_{top} = m_{top}^{bb4I} - m_{top}^{nom} = 0.23 \pm 0.14 \text{ GeV}$$

Summary and conclusions

Summary and conclusions

- The most recent direct measurement of the top-quark mass from ATLAS have been presented: A precision of 0.80 GeV is achieved
- The event reconstruction method has been improved with a DNN.
- Only the **lepton/b-jet pair with largest** p_{τ} is used to reduce systematics.
- The **detector related uncertainties start to be subdominant** compared to modelling uncertainties: Excellent performance of ATLAS detector in Run-2.
- ATLAS actively working in the improvement of modelling uncertainties.
- The latest studies about the Matching uncertainty have been presented, replacing comparisons of different generators by dedicated variations.
- The measurement show that the choice of the recoil scheme can lead to significant shifts in the top quark mass and that more studies are needed to provide a sensible recipe to take this effect into account.
- New measurement with improved modelling systematics and extended also to lepton+jets channel expected to finalize soon. Stay tuned.

Thanks for your attention

Direct (MC) and indirect (pole) top mass

ATLAS+CMS Preliminary LHCtopWG	m _{top} summary,√s = 7-13 TeV	November 2022	
World comb. (Mar 2014) [2]	total stat		
total uncertainty	m _{top} ± total (stat± syst)	Vs Ref.	
LHC comb. (Sep 2013) LHCtopWG	173.29 \pm 0.95 (0.35 \pm 0.88)	7 TeV [1]	
World comb. (Mar 2014)	173.34± 0.76 (0.36± 0.67)	1.96-7 TeV [2]	
ATLAS, I+jets	172.33±1.27 (0.75±1.02)	7 TeV [3]	
ATLAS, dilepton		7 TeV [3]	
ATLAS, all jets	■ 175.1± 1.8 (1.4± 1.2)	7 TeV [4]	
ATLAS, single top	172.2±2.1 (0.7±2.0)	8 TeV [5]	
ATLAS, dilepton	172.99±0.85 (0.41±0.74)	8 TeV [6]	
ATLAS, all jets	173.72±1.15 (0.55±1.01)	8 TeV [7]	
ATLAS, I+jets	172.08±0.91 (0.39±0.82)	8 TeV [8]	
ATLAS comb. (Oct 2018)	$172.69 \pm 0.48 \ (0.25 \pm 0.41)$	7+8 TeV [8]	
ATLAS, leptonic invariant mass	+ 174.41± 0.81 (0.39± 0.66± 0.25)	13 TeV [9]	
ATLAS, dilepton (*)	$172.63 \pm 0.79\;(0.20 \pm 0.67 \pm 0.37)$	13 TeV [10]	
CMS, I+jets	173.49±1.06 (0.43±0.97)	7 TeV [11]	
CMS, dilepton	172.50±1.52 (0.43±1.46)	7 TeV [12]	
CMS, all jets		7 TeV [13]	
CMS, I+jets	172.35±0.51 (0.16±0.48)	8 TeV [14]	
CMS, dilepton	172.82±1.23 (0.19±1.22)	8 TeV [14]	
CMS, all jets	172.32±0.64 (0.25±0.59)	8 TeV [14]	
CMS, single top	172.95±1.22 (0.77±0.95)	8 TeV [15]	
CMS comb. (Sep 2015)	172.44 \pm 0.48 (0.13 \pm 0.47)	7+8 TeV [14]	
CMS, I+jets	172.25±0.63 (0.08±0.62)	13 TeV [16]	
CMS, dilepton	172.33±0.70 (0.14±0.69)	13 TeV [17]	
CMS, all jets	172.34 ± 0.73 (0.20 \pm 0.70)	13 TeV [18]	
CMS, single top	172.13±0.77 (0.32±0.70)	13 TeV [19]	
CMS, I+jets (*)	171.77 ± 0.38	13 TeV [20]	
CMS, boosted (*)	172.76±0.81 (0.22±0.78)	13 TeV [21]	
* Proliminon	[T] ATLAS-CONF-2013-102 [II] EPJC 79 (2019) 290 [2] aXN/1403-4427 [II] aXN/2209.00683 [II] III / III	[15] EPJG 77 (2017) 054 [14] EPJG 78 (2018) 891	
Freinninary	[4] EP3C 75 (2015) 350 [111] JHEP 12 (2012) 105 [5] ATLAS-CONF-2014-055 [112] EP3C 72 (2012) 2202	[18] EPJG 70 (2010) 313 [19] arXiv:2108.10407	
	[6] PLB 701 (2016) 350 [13] EPUC 74 (2014) 2756 [7] JHEP 09 (2017) 118 [14] PRD 30 (2016) 072004	201 0M9-PA5-TOP-20-008 211 0M5-PAS-TOP-21-012	
165 170 1	75 180 1	85	
m _{top} [GeV]			

Event yields & full systematic breakdown

Data	454960
$t\bar{t}$ signal	445000 ± 28000
Single-top-quark signal	14320 ± 890
Z+jets	10200 ± 4400
Diboson	420 ± 210
$tar{t}+V,tWZ,tZq$	1320 ± 200
$t\bar{t} + H$	440 ± 45
NP/fake leptons	760 ± 760
Signal+background	472000 ± 29000
Expected background fraction	0.028 ± 0.010
Data/(Signal + background)	0.963 ± 0.059

Data	83785
$t\bar{t}$ signal	90800 ± 5800
Single-top-quark signal	1144 ± 74
Z+jets	122 ± 49
Diboson	4.1 ± 2.2
$t\bar{t} + V, tWZ, tZq$	270 ± 41
$t\bar{t} + H$	86.9 ± 8.8
NP/fake leptons	100 ± 100
Signal+background	92500 ± 5800
Expected background fraction	$0.006~\pm~0.001$
Data/(Signal + background)	$0.905~\pm~0.058$

	$m_{\rm top} \; [{\rm GeV}]$
Result	172.63
Statistics	0.20
Method	0.05 ± 0.04
Matrix-element matching	0.35 ± 0.07
Parton shower and hadronisation	0.08 ± 0.05
Initial- and final-state QCD radiation	0.20 ± 0.02
Underlying event	0.06 ± 0.10
Colour reconnection	0.29 ± 0.07
Parton distribution function	0.02 ± 0.00
Single top modelling	0.03 ± 0.01
Background normalisation	0.01 ± 0.02
Jet energy scale	0.38 ± 0.02
<i>b</i> -jet energy scale	0.14 ± 0.02
Jet energy resolution	0.05 ± 0.02
Jet vertex tagging	0.01 ± 0.01
b-tagging	0.04 ± 0.01
Leptons	0.12 ± 0.02
Pile-up	0.06 ± 0.01
Recoil effect	0.37 ± 0.09
Total systematic uncertainty (without recoil)	0.67 ± 0.05
Total systematic uncertainty (with recoil)	0.77 ± 0.06
Total uncertainty (without recoil)	0.70 ± 0.05
Total uncertainty (with recoil)	0.79 ± 0.06

Impact of the transverse momentum cut

- 10±6% more events are predicted by the simulation than are observed in data.
- Caused by the $p_T^{lb} > 160 \text{ GeV}$ requirement: softer data p_T spectrum than in MC.
- Caused by a softer top- p_T as observed in previous analyses. 8 TeV: Δ EY = 7±7%.

• A parton-level reweighting to the NNLO calculation as a function of p_T^{top} , p_T^{tt} , m_{tt} has been tested: $\Delta m_{top} = 0.10 \pm 0.01$ GeV, smaller than scale variations uncer.

Radiation and recoil effects

ATLAS-CONF-2022-058 arXiv.2209.00583 TOPQ-2017-17

As the recoil scheme modifies the distribution of the b-hadron momentum fraction, for the SMT analysis, a rederivation of the best rb value has been performed for RTT.

 Δm_{top} (recoil-to-Top – recoil-to-colour=ON) [SMT] = 250 MeV Δm_{top} (recoil-to-Top – recoil-to-colour=ON) [dilep] = -370 ± 90 MeV

Non-resonant and off-shell effects: bb4l

