Constraints on anomalous Higgs boson couplings in the HWW channel at CMS

8th Red LHC 2024 workshop 28-30 May 2024 (UCM)

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

Dermot Moran (CIEMAT)

Why is the Higgs boson so light?

IT'S A UITLE TOO HOT FOR 125 GeV ...

BSM ideas to solve the Hierarchy problem :

A new symmetry protects the higgs mass : SUSY

• Higgs is a bound state of new strong interaction : Composite Higgs

Can significantly alter Higgs phenomenology

SM picture observed so far

SM picture observed so far

SM picture observed so far

Anomalous couplings (AC) approach

Ideal framework for general study of the HVV coupling structure

 \rightarrow Consider tree-level, loops/BSM contributions to HVV

 \rightarrow Exploit full event kinematics (production + decay information)

Will discuss Run 2 study of HVV coupling structure in HWW channel HIG-22-008 (Accepted for publication by EPJC) arXiv:2403.00657

HVV anomalous coupling parametrization

HVV scattering amplitude (General Lorentz invariant form) :

$$\mathcal{A}(\text{HVV}) \sim \left[a_1^{\text{VV}} + \frac{\kappa_1^{\text{VV}} q_1^2 + \kappa_2^{\text{VV}} q_2^2}{\left(\Lambda_1^{\text{VV}}\right)^2} \right] m_{\text{V1}}^2 \epsilon_{\text{V1}}^* \epsilon_{\text{V2}}^* + a_2^{\text{VV}} \epsilon_{\mu\nu}^{*(1)} f^{*(2)\mu\nu} + a_3^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2)\mu\nu}$$

Higgs to EWK vector boson couplings :

 $\begin{array}{c} \mathsf{HWW}, \mathsf{HZZ} \\ \mathsf{H}\gamma\gamma, \mathsf{HZ}\gamma \end{array}$

 \rightarrow Assume H $\gamma\gamma$, HZ γ constrained from direct decay measurements

 \rightarrow SU(2) x U(1) sets relationship between HWW and HZZ

HVV anomalous coupling parametrization

$$\mathcal{A}(\text{HVV}) \sim \left[a_{1}^{\text{VV}} + \frac{\kappa_{1}^{\text{VV}}q_{1}^{2} + \kappa_{2}^{\text{VV}}q_{2}^{2}}{\left(\Lambda_{1}^{\text{VV}}\right)^{2}}\right] m_{\text{V1}}^{2} \epsilon_{\text{V1}}^{*} \epsilon_{\text{V2}}^{*} + a_{2}^{\text{VV}} \epsilon_{\mu\nu}^{*(1)} f^{*(2)\mu\nu} + a_{3}^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2)\mu\nu}$$

- 4 independent HVV couplings : a_1 : SM tree level coupling k_1/Λ^2 : CP-Even AC
- a₂ : CP-Even AC
- a₃ : CP-Odd AC

HVV anomalous coupling parametrization

$$\mathcal{A}(\text{HVV}) \sim \left[a_{1}^{\text{VV}} + \frac{\kappa_{1}^{\text{VV}}q_{1}^{2} + \kappa_{2}^{\text{VV}}q_{2}^{2}}{\left(\Lambda_{1}^{\text{VV}}\right)^{2}}\right] m_{\text{V1}}^{2} \epsilon_{\text{V1}}^{*} \epsilon_{\text{V2}}^{*} + a_{2}^{\text{VV}} \epsilon_{\mu\nu}^{*(1)} f^{*(2)\mu\nu} + a_{3}^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2)\mu\nu}$$

4 independent HVV couplings : a_1 : SM tree level coupling k_1/Λ^2 : CP-Even AC a_2 : CP-Even AC a_3 : CP-Odd AC

ightarrow Convenient to measure fractional contribution of AC to σ :

$$f_{ai} = rac{{a_i}^2 \sigma_i}{\sum_j a_j^2 \sigma_j} \operatorname{sign} \left(rac{a_i}{a_1}
ight)$$

Signal model contains signal strength μ + 3 f_{ai}

Equivalent to SM EFT

$$\begin{split} \mathcal{L}_{\rm hvv} &= \quad \frac{h}{v} \left[M_Z^2 \left(1 + \underbrace{\delta c_z}_{2} Z_{\mu} Z^{\mu} + \frac{M_Z^2}{v^2} \underbrace{c_{zz}}_{2} \underbrace{z_{\mu\nu}}_{\nu} Z^{\mu\nu} + \frac{e^2}{s_w^2} \underbrace{c_{zz}}_{2} \underbrace{z_{\mu\nu}}_{\nu} \partial_{\nu} Z^{\mu\nu} + \frac{M_Z^2}{v^2} \underbrace{\tilde{c}_{zz}}_{2} \underbrace{z_{\mu\nu}}_{\nu} X^{\mu\nu} \right. \\ &+ 2M_W^2 \left(1 + \underline{\delta c_w} \right) W_{\mu}^+ W^{-\mu} + 2 \frac{M_W^2}{v^2} \underbrace{c_{ww}}_{w} W_{\mu\nu}^+ W^{-\mu\nu} + \frac{e^2}{s_w^2} \underbrace{c_{ww}}_{w} \left(W_{\mu}^- \partial_{\nu} W^{+\mu\nu} + \mathrm{h.c.} \right) \\ &+ \frac{e^2}{2s_w^2} \underbrace{\tilde{c}_{ww}}_{w} W^{+\mu\nu} \tilde{W}_{\mu\nu}^- + \frac{e^2}{2s_w c_w} \underbrace{c_{\gamma\gamma}}_{\gamma} Z_{\mu\nu} A^{\mu\nu} + \frac{e^2}{2s_w c_w} \underbrace{\tilde{c}_{\gamma\gamma}}_{z\gamma} Z_{\mu\nu} \tilde{A}^{\mu\nu} + \frac{e^2}{s_w c_w} \underbrace{c_{\gamma\omega}}_{z\gamma} Z_{\mu} \partial_{\nu} A^{\mu\nu} \\ &+ \underbrace{c_{\gamma\gamma}}_{q} \frac{e^2}{4} A_{\mu\nu} A^{\mu\nu} + \underbrace{\tilde{c}_{\gamma\gamma}}_{q} \frac{e^2}{4} A^{\mu\nu} \tilde{A}_{\mu\nu} + c_{gg} \frac{g_s^2}{4} G_{\mu\nu}^a G^{\mu\nu} + \underbrace{\tilde{c}_{gg}}_{sg} \frac{g_s^2}{4} G^{\mu\nu} \tilde{G}_{\mu\nu}^a \right], \end{split}$$

Amplitude couplings map directly to EFT couplings (Higgs basis)

Interpretation in terms of EFT couplings also considered.

HVV Analysis strategy

Dedicated Observables

Exploit kinematics of 2 associated jets with MELA based discriminants

For AC sensitivity at decay vertex : m_{\parallel} , m_{T}

Kinematic Discriminants (KDs)

KDs combine **multiple observables** Example : VBF(a_3) KD using D_{CP} and $[D_{VBF}, m_{II}, D_{0-}]$

Kinematic Discriminants (KDs)

KDs combine **multiple observables** Example : VH(a_3) KD using D_{CP} and $[m_{II}, D_{0-}]$

Kinematic Discriminants (KDs)

KDs combine **multiple observables** Example : VH(a_3) KD using D_{CP} and $[m_{II}, D_{0-}]$

f_{ai} likelihood scans

signal strength $\mu + f_{ai}$ floated simultaneously

Signal strength $\mu \sim 0.9 \pm 20\%$

 $\mathbf{f}_{ai} \sim 0$ consistent with SM Higgs boson (Best constraints at the per mille level)

Coupling likelihood scans (Higgs basis)

All couplings floated simultaneously

Coupling constraints (Higgs basis)

Possible to rotate from Higgs to Warsaw basis (Mass \rightarrow gauge eigenstate basis)

Coupling constraints (Warsaw basis)

Only one of $[c_{HW}, c_{HWB}, c_{HB}]$ and $[c_{H\tilde{W}}, c_{H\tilde{W}B}, c_{H\tilde{B}}]$ is independent (Due to $H\gamma\gamma, HZ\gamma$ assumptions)

Dermot Moran (CIEMAT)

Coupling constraints (Warsaw basis)

Only one of $[c_{HW}, c_{HWB}, c_{HB}]$ and $[c_{H\tilde{W}}, c_{H\tilde{W}B}, c_{H\tilde{B}}]$ is independent (Due to $H\gamma\gamma, HZ\gamma$ assumptions)

Hgg anomalous coupling parametrization

$$\mathcal{A}(\text{HVV}) \sim \left[a_{1}^{\text{VV}} + \frac{\kappa_{1}^{\text{VV}} a_{1}^{2} + \kappa_{2}^{\text{VV}} q_{2}^{2}}{\left(\Lambda_{1}^{\text{VV}}\right)^{2}}\right] m_{\text{V1}}^{2} \epsilon_{\text{V1}}^{*} \epsilon_{\text{V2}}^{*} + a_{2}^{\text{VV}} \epsilon_{\mu\nu}^{*(1)} f^{*(2)\mu\nu} + a_{3}^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2)\mu\nu}$$

2 independent Hgg couplings : a₂ : SM loop a₃ : CP-Odd AC

ggH + 2 jets process sensitive to Hgg AC at production vertex

Hgg AC analysis

signal strength $\mu + f_{a3}^{ggH}$ floating

 $\mathbf{f}_{ai} \sim \mathbf{0}$ consistent with SM Higgs boson

Analysis is currently statistically limited

Conclusions

Measurement of HVV coupling structure a crucial test of SM

Dedicated study in HWW channel with full Run 2 data presented

Measurements Consistent with SM Higgs boson (Best constraints on f_{ai} at the per mille level)

Some of the tightest constraints yet on related EFT couplings

Selection + categorization

Variable			Selection					
Number of leptons		2 (ej	2 (e μ of opposite charge)					
$p_{ ext{T}}^{\ell 1}$			>25 GeV					
$p_{\mathrm{T}}^{\ell 2}$		>13 Ge	>13 GeV (10 GeV for 2016 data)					
$m_{\ell\ell}$		12–76	12–76.2 GeV or >106.2 GeV					
$p_{ extsf{T}}^{\ell\ell}$	>30 GeV							
$p_{\rm T}^{\rm miss}$	$>20\mathrm{GeV}$							
$m_{\mathrm{T}}^{\ell_2}$	$m_{\rm T}^{\ell_2}$ >30 GeV							
$m_{\mathrm{T}}^{\mathrm{H}}$			60–125 GeV					
N _{jet} (b jets)			0					
Variable	ggH	VBF	Resolved VH	Boosted VH				
N _{jet} (V jets)	0	0	0	>0				
N _{jet} (AK4 jets)	0 & 1	2	2	—				
m_{jj}	_	> 120 GeV	60-120 GeV					

$SU(2) \times U(1)$ relationship between HWW and HZZ

 $a_1^{WW} = a_1^{ZZ}$, $a_{2}^{WW} = c_{w}^{2} a_{2}^{ZZ}$, $a_3^{\rm WW} = c_w^2 a_3^{\rm ZZ},$ $\frac{\kappa_1^{\rm WW}}{(\Lambda_1^{\rm WW})^2} = \frac{1}{c_{\rm w}^2 - s_{\rm w}^2} \left(\frac{\kappa_1^{\rm ZZ}}{(\Lambda_1^{\rm ZZ})^2} - 2s_{\rm w}^2 \frac{a_2^{\rm ZZ}}{m_Z^2} \right),$ $\frac{\kappa_2^{Z\gamma}}{(\Lambda_1^{Z\gamma})^2} = \frac{2s_{\rm w}c_{\rm w}}{c_{\rm w}^2 - s_{\rm w}^2} \left(\frac{\kappa_1^{ZZ}}{(\Lambda_1^{ZZ})^2} - \frac{a_2^{ZZ}}{m_2^2}\right),$

Higgs and Warsaw basis relationships

$$\begin{split} \delta c_z &= \frac{1}{2} a_1^{ZZ} - 1, \\ c_{zz} &= -\frac{2s_w^2 c_w^2}{e^2} a_2^{ZZ}, \\ \tilde{c}_{zz} &= -\frac{2s_w^2 c_w^2}{e^2} a_3^{ZZ}, \\ \tilde{c}_{zz} &= -\frac{2s_w^2 c_w^2}{e^2} a_3^{ZZ}, \\ c_{z\Box} &= \frac{m_Z^2 s_w^2}{e^2} \frac{\kappa_1^{ZZ}}{(\Lambda_1^{ZZ})^2}, \\ \delta a_1^{ZZ} &= \frac{v^2}{\Lambda^2} \left(2c_{\rm H\Box} + \frac{6e^2}{s_w^2} c_{\rm HWB} + (\frac{3c_w^2}{2s_w^2} - \frac{1}{2})c_{\rm HD} \right), \\ \kappa_1^{ZZ} &= \frac{v^2}{\Lambda^2} \left(-\frac{2e^2}{s_w^2} c_{\rm HWB} + (1 - \frac{1}{2s_w^2})c_{\rm HD} \right), \\ a_2^{ZZ} &= -2\frac{v^2}{\Lambda^2} \left(s_w^2 c_{\rm HB} + c_w^2 c_{\rm HW} + s_w c_w c_{\rm HWB} \right), \\ a_3^{ZZ} &= -2\frac{v^2}{\Lambda^2} \left(s_w^2 c_{\rm H\bar{B}} + c_w^2 c_{\rm H\bar{W}} + s_w c_w c_{\rm H\bar{W}B} \right), \end{split}$$

Dermot Moran (CIEMAT)

Systematic breakdown

Uncertainty source	$\Delta \mu / \mu$	$\Delta \mu_{\rm ggH} / \mu_{\rm ggH}$	$\Delta \mu_{\rm VBF} / \mu_{\rm VBF}$	$\Delta \mu_{\rm WH} / \mu_{\rm WH}$	$\Delta \mu_{\rm ZH} / \mu_{\rm ZH}$
Theory (signal)	4%	5%	13%	2%	<1%
Theory (background)	3%	3%	2%	4%	5%
Lepton misidentification	2%	2%	9%	15%	4%
Integrated luminosity	2%	2%	2%	2%	3%
b tagging	2%	2%	3%	$<\!\!1\%$	2%
Lepton efficiency	3%	4%	2%	1%	4%
Jet energy scale	1%	$<\!1\%$	2%	$<\!\!1\%$	3%
Jet energy resolution	$<\!\!1\%$	1%	$<\!1\%$	$<\!\!1\%$	3%
$p_{\rm T}^{\rm miss}$ scale	$<\!\!1\%$	1%	$<\!1\%$	2%	2%
PDF	1%	2%	$<\!1\%$	<1%	2%
Parton shower	$<\!\!1\%$	2%	$<\!1\%$	1%	1%
Backg. norm.	3%	4%	6%	4%	6%
Stat. uncertainty	5%	6%	28%	21%	31%
Syst. uncertainty	9%	10%	23%	19%	11%
Total uncertainty	10%	11%	36%	29%	33%

*From legacy HWW analysis (HIG-20-013)

Timeline for vector boson couplings

MELA at the production vertex

MATRIX ELEMENT LIKELIHOOD APPROACH (MELA): Event by event discriminator build upon matrix elements

Contain the maximal amount of theoretical information available for the hard process

Combined with reconstruction level information:

- \checkmark 4-vector of the <u>2 associated jets</u> in the production.
 - ✓ Higgs-proxy 4-vector (2 leptons + MET).

$$\mathcal{D}_{sig} = \frac{\mathcal{P}_{sig}(\vec{\Omega})}{\mathcal{P}_{sig}(\vec{\Omega}) + \mathcal{P}_{bkg}(\vec{\Omega})} \quad \mathcal{D}_{BSM} = \frac{\mathcal{P}_{BSM}(\vec{\Omega})}{\mathcal{P}_{BSM}(\vec{\Omega}) + \mathcal{P}_{SM}(\vec{\Omega})} \quad \mathcal{D}_{INT} = \frac{\mathcal{P}_{SM-BSM}^{int}(\vec{\Omega})}{\mathcal{P}_{SM}(\vec{\Omega}) + \mathcal{P}_{BSM}(\vec{\Omega})}$$

$$ggH \leftrightarrow VBF \quad SM coupling \leftrightarrow BSM coupling (one for each coupling)) \quad Interference \leftrightarrow Pure SM/BSM (used for a_2 and a_3)$$

Boosted VH

+ AK8 jets (anti-kt, R=0.8): Reconstruction of Boosted V bosons from VH production.

Substructure: 2 sub-jets (A & B)

V-Tagging: softdrop mass + Tau21 + JECs corrections

Samples

DATA LHC RUN 2 Dataset

pp collisions from the years 2016-2018 $\rightarrow {\cal L}_{int}$ = 138 fb⁻¹

- Dilepton triggers are applied.
- · Single lepton triggers are used to recover efficiency.
- Trigger efficiencies for MC are estimated from data.

BACKGROUNDS

- ttbar: POWHEGv2 NLO + top p_T reweighting
- DY→ττ embedded samples
- Non-resonant WW POWHEGv2 NLO reweighted to NNLO + NNLL in ptWW
- W+jets with jets misidentification (non-prompt) → Data driven estimation
- Minor backgrounds taken from simulation: WZ, ZZ, Vγ, Vγ*, VVV (V=W, Z)

SM SAMPLES

POWHEGv2 NL0

- ggH sample reweighting to NNLOPS (p_T and number of jets)
- For ggH events with ≥ 1 jet → MINLO HJJ at NLO

AC SAMPLES

ggH, VBF, and VH signals for studying HVV:

- Generated with JHUGEN at LO QCD
- MELA reweighting of AC samples to any signal hypothesis to increase statistics.

ggH+2 jets signals for studying Hgg vertex:

- Generated with MINLO at NLO.
- Reweighting to increase statistics.