

Resonant Di-Higgs Production at the LHC: Theory vs. Experiment

Sven Heinemeyer, IFT (CSIC, Madrid)

Madrid, 05/2024

- 1. Introduction
- 2. Resonant di-Higgs production: theory vs. experiment
- 3. My first Neural Network analysis
- 4. Conclusions

1. Introduction

SM triple Higgs coupling: comparison of all colliders:

Di-Higgs production at the LHC:

 \Rightarrow strong interference of "box" and "SM-like Higgs"

Resonant di-Higgs production requires BSM physics

Resonant di-Higgs production requires BSM physics Two Higgs Doublet Model (2HDM): Fields:

$$\Phi_1 = \begin{pmatrix} \phi_1^+ \\ \frac{1}{\sqrt{2}}(v_1 + \rho_1 + i\eta_1) \end{pmatrix}, \ \Phi_2 = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}}(v_2 + \rho_2 + i\eta_2) \end{pmatrix}$$

Potential:

$$V = m_{11}^{2} |\Phi_{1}|^{2} + m_{22}^{2} |\Phi_{2}|^{2} - m_{12}^{2} (\Phi_{1}^{\dagger} \Phi_{2} + h.c.) + \frac{\lambda_{1}}{2} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{\lambda_{2}}{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \frac{\lambda_{5}}{2} [(\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.]$$

Physical states: *h*, *H*, (*CP*-even), *A* (*CP*-odd), *H*[±] (charged)

"Physical" input parameters:

$$c_{eta-lpha}$$
 , $aneta$, v , M_h , M_H , M_A , M_{H^\pm} , m_{12}^2

Alignment limit: $c_{\beta-\alpha} \rightarrow 0$ (for $M_h \sim 125 \text{ GeV}$)

Many triple Higgs couplings: λ_{hhh} , λ_{hhH} , λ_{hHH} , λ_{hH+H^-} , λ_{HAA} , ...

Assumption: $h \sim h_{125}$

 Z_2 symmetry to avoid FCNC:

$$\Phi_1 \to \Phi_1 \;,\; \Phi_2 \to -\Phi_2$$

Extension of the Z_2 symmetry to fermions determines four types:

	<i>u</i> -type	<i>d</i> -type	leptons	
type I	Φ2	Φ2	Φ2	
type II	Φ2	Φ1	Φ1	ightarrow SUSY type
type III (lepton-specific)	Φ2	Φ2	Φ1	
type IV (flipped)	Φ2	Φ_1	Φ2	

Sum rule (with h SM-like): $\sin(\beta - \alpha) \approx 1$, $\cos(\beta - \alpha) \approx 0$

Unitarity/perturbativity and EWPO : $\Rightarrow M_A \sim M_H \sim M_{H^{\pm}}$

Box vs. s-channel Higgs:

Inclusion of one-loop corrections to THCs:

\Rightarrow always closed subset, dominant for large THCs

BSM THCs at the HL-LHC

\Rightarrow possible strong resonance with BSM Higgs

Important: experimental limits are obtained for

- non-resonant production
- purely resonant production
- \Rightarrow no limits available for mixed scenarios :-(
- \Rightarrow existing exclusion bounds questionable!

Example model in this talk: 2HDM Similar results exist also for RxSM (Higgs singlet extension) [S.H., A. Verduras PRELIMINARY]

2. Resonant di-Higgs production: theory vs. experiment:

 \Rightarrow analyses so far focus on "SM THC": $\kappa_{\lambda} := \lambda_{hhh} / \lambda_{hhh}^{\text{SM,tree}} \equiv 1$ BSM case 1: $\kappa_{\lambda} \neq 1$ BSM case 2: THC that involves BSM Higgses: λ_{hhH}, \ldots

Example of m_{hh} distortions:

[S.H., M. Mühlleitner, K. Radchenko, G. Weiglein '24]

Experimental analysis vs. reality:

[S.H., M. Mühlleitner, K. Radchenko, G. Weiglein '24]

 \Rightarrow experimental analysis \Rightarrow full calculation

Experimental analysis vs. reality:

[S.H., M. Mühlleitner, K. Radchenko, G. Weiglein '24]

\Rightarrow excluded by ATLAS resonant searches \Leftrightarrow reality: exclusion?

Experimental analysis vs. reality:

[S.H., M. Mühlleitner, K. Radchenko, G. Weiglein '24]

\Rightarrow excluded by ATLAS resonant searches \Leftrightarrow reality: exclusion?

3. My first neural network analysis

Di-Higgs production at the HL-LHC: [F. Arco, S.H., M. Mühlleitner, K. Radchenko '22] 2HDM type I: $m_{A,H^{\pm}} = 545 \text{ GeV}, m_H = 515 \text{ GeV}, t_{\beta} = 10, c_{\beta-\alpha} = 0.2, m_{12}^2 = m_H^2 c_{\alpha}^2 / t_{\beta}$

Benchmark point: 2HDM type I, $m_{A,H^{\pm}} = 545 \text{ GeV}, m_H = 515 \text{ GeV}, t_{\beta} = 10, c_{\beta-\alpha} = 0.2, m_{12}^2 = m_H^2 c_{\alpha}^2 / t_{\beta}$

\Rightarrow smearing of 15% applied (optimistic?) \Rightarrow access to $\xi_H^t \times \lambda_{hhH}$?

\Rightarrow binning of 50 GeV applied (realistic?) \Rightarrow access to $\xi_H^t \times \lambda_{hhH}$?

Parameter plane to train the NN:

[M. Frank, S.H., M. Mühlleitner, K. Radchenko, PRELIMINARY]

Each point yields an m_{hh} distribution \Rightarrow fed to the NN

[M. Frank, S.H., M. Mühlleitner, K. Radchenko, PRELIMINARY]

Train with the correct m_{hh} distributions: \Rightarrow perfect result

[M. Frank, S.H., M. Mühlleitner, K. Radchenko, PRELIMINARY]

\Rightarrow but not realistic . . .

"Realistic result" has statistical uncertainties ($b\bar{b} \ b\bar{b}$ final state):

(and corr. exp. efficiencies) [M. Frank, S.H., M. Mühlleitner, K. Radchenko, PRELIMINARY]

 \Rightarrow for each point in the plane test an m_{hh} distribution statistically smeared

"Realistic" determination of $\xi_H^t \times \lambda_{hhH}$:

[M. Frank, S.H., M. Mühlleitner, K. Radchenko, PRELIMINARY]

 \Rightarrow "good" point much more likely than "bad" points

"Realistic" determination of $\lambda_{hhH} \times \xi_H^t$:

[M. Frank, S.H., M. Mühlleitner, K. Radchenko, PRELIMINARY]

Sven Heinemeyer, 8th Red LHC workshop (U. Complutense, Madrid), 30.05.2024

Hypothetical improvement in the efficiencies by $\times 2$:

[M. Frank, S.H., M. Mühlleitner, K. Radchenko, PRELIMINARY]

4. Conclusions

- Tripe Higgs couplings are in the focus of current and future colliders \Rightarrow focus so far on "SM triple Higgs coupling", $\kappa_{\lambda} := \lambda_{hhh} / \lambda_{hhh}^{SM}$ BSM case 1: $\kappa_{\lambda} \neq 1$ BSM case 2: THC that involves BSM Higgses: λ_{hhH} , ...
 - \Rightarrow Both can have a strong impact on $\sigma(gg \rightarrow hh)$ and m_{hh}
- <u>BSM model: 2HDM:</u> spectrum: h, H, A, H^{\pm} with λ_{hhh} , λ_{hhH} , ... \Rightarrow large one-loop corrections to κ_{λ} of 100% ... 1000%
- Experimental searches for resonant di-Higgs production: \Rightarrow exp. analyses leave out interferences with non-res. diagrams \Rightarrow strong impact on $m_{hh} \Rightarrow$ results not reliable
- Access to $\xi_H^t \times \lambda_{hhH}$ at the HL-LHC: interference of res. H with non-res. diagrams \Rightarrow peak-dip structure \Rightarrow diluted by smearing (15%) and binning (50 GeV)
- <u>Solution: deep NN</u> trained on realistic set of m_{hh} 's \Rightarrow biggest challenge: statistical uncertainty in m_{hh} \Rightarrow taken into account, incl. exp. efficiencies for $hh \rightarrow b\bar{b}b\bar{b}$
 - \Rightarrow NN analysis shows remarkable sensitivity
 - \Rightarrow extraction of $\xi_H^t \times \lambda_{hhH}$ possible

Further Questions?