Aligned two Higgs doublet model and the global fits

Anirban Karan

IFIC (CSIC – UV), Valencia, Spain

In Collaboration With: Victor Miralles and Antonio Pich

Based on: Phys.Rev.D 109 (2024) 3, 3

8th Red LHC Workshop Universidad Complutense de Madrid, Spain 28th - 30th May, 2024

Motivation

2HDM: SM + another scalar doublet.

Prospects: New sources of CP violation, Axion-like phenomenology, Dark matter aspects, Electroweak Baryogenesis, Stability of scalar potential till Planck scale, EFT for SUSY, etc.

- Problems: FCNC
- **Solutions:** 1) Additional Z_2 symmetry, 2) **A2HDM**

A2HDM: The Yukawa matrices corresponding to two scalars are proportional to each other.

- Advantages: 1) More generic framework to study 2HDM.
- 2) There could be additional sources of CP violation.
- 3) Rich phenomenology.

Pich, Tuzon PRD 80 (2009) 091702; Ferreira, Lavoura, Silva PLB 688 (2010) 341; Jung, Pich, Tuzon JHEP 11 (2010) 003; Braeuninger, Ibarra, Simonetto PLB 692 (2010) 189; Bijnens, Lu, Rathsman JHEP 05 (2012) 118; Li, Lu, Pich JHEP 06 (2014) 022; Abbas, et al. JHEP 06 (2015) 005; Botella, et al. EPJC 75 (2015) 286; Gori, Haber, Santos JHEP 06 (2017) 110; Kanemura, Mondal, Yagyu JHEP 02 (2023) 237; etc...

The Model: A2HDM

Scalar Potential

$$\begin{aligned} \phi_a : \langle 0 | \phi_a^T | 0 \rangle &= (0, v_a e^{i\theta_a}) \quad a \in \{1, 2\} \\ \hline & \mathsf{Global} \ SU(2) \implies \text{``Higgs basis''} \qquad \text{``Goldstone} \\ \phi_a : \quad \Phi_1 &= \frac{1}{\sqrt{2}} \left(\begin{array}{c} \sqrt{2} \ G^+ \\ S_1 + v + i \ G^0 \end{array} \right), \quad \Phi_2 &= \frac{1}{\sqrt{2}} \left(\begin{array}{c} \sqrt{2} \ H^+ \\ S_2 + i \ S_3 \end{array} \right) \\ \hline & \mathsf{CP-even} \ll \\ \hline & \mathsf{CP-odd} \\ \left(\begin{array}{c} h \\ H \end{array} \right) &= \left(\begin{array}{c} \cos \tilde{\alpha} & \sin \tilde{\alpha} \\ -\sin \tilde{\alpha} & \cos \tilde{\alpha} \end{array} \right) \left(\begin{array}{c} S_1 \\ S_2 \end{array} \right) \quad \text{and} \quad A = S_3 \,. \end{aligned}$$

Scalar Potential:

$$\begin{split} V &= \mu_1 \Phi_1^{\dagger} \Phi_1 + \mu_2 \Phi_2^{\dagger} \Phi_2 + \left[\mu_3 \Phi_1^{\dagger} \Phi_2 + h.c. \right] + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) \\ &+ \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \left[\left(\frac{\lambda_5}{2} \Phi_1^{\dagger} \Phi_2 + \lambda_6 \Phi_1^{\dagger} \Phi_1 + \lambda_7 \Phi_2^{\dagger} \Phi_2 \right) (\Phi_1^{\dagger} \Phi_2) + h.c. \right]. \end{split}$$

Gauge-Higgs Coupling:

 $g_{hVV} = \cos\tilde{\alpha} \ g_{hVV}^{SM} \,, \quad g_{HVV} = -\sin\tilde{\alpha} \ g_{hVV}^{SM} \,, \quad g_{AVV} = 0 \,, \quad VV \equiv (W^+W^-, \, ZZ)$

Independent parameters for scalar potential

- * Parameters: $\mu_1, \mu_2, \mu_3, \lambda_{1,2,3,4}, \lambda_{5,6,7} \implies 14$ parameters.
- *** Minimization Condition:** $v^2 = -\frac{2\mu_1}{\lambda_1} = -\frac{2\mu_3}{\lambda_6}$
- * Independent parameters: $v, \mu_2, \lambda_{1,2,3,4}, |\lambda_{5,6,7}|$, two relative phases tween $\lambda_{5,6,7}$. $\implies 11$ parameters.

* CP conserving case: 9 independent parameters.

* Masses:

$$\begin{split} M_{H\pm}^2 &= \mu_2 + \frac{\lambda_3}{2} v^2 \,, \qquad M_{h,H}^2 = \frac{1}{2} \left(\Sigma \mp \Delta \right), \qquad M_A^2 = M_{H\pm}^2 + \frac{v^2}{2} \left(\lambda_4 - \lambda_5 \right), \\ \text{with} \quad \Sigma &= M_{H\pm}^2 + \left(\lambda_1 + \frac{\lambda_4}{2} + \frac{\lambda_5}{2} \right) v^2 \quad \text{and} \quad \Delta &= \sqrt{\left(\Sigma - 2\lambda_1 v^2 \right)^2 + 4 \, \lambda_6^2 \, v^4} \,. \\ \text{ Mixing angle: $\tan \tilde{\alpha} = \frac{M_h^2 - v^2 \, \lambda_1}{v^2 \, \lambda_6} = \frac{v^2 \, \lambda_6}{v^2 \, \lambda_1 - M_H^2} \,. \end{split}$$$

* Parameter set: $X M_h$, $M_{H^{\pm}}$, M_H , M_A , $\tilde{\alpha}$, λ_2 , λ_3 and $\lambda_7 \implies 7$ parameters.

Fermionic interaction

Solution:

$$\begin{split} -\mathcal{L}_{Y} &= \left(1 + \frac{S_{1}}{v}\right) \left\{ \bar{u}_{L} \, M_{u} \, u_{R} + \bar{d}_{L} \, M_{d} \, d_{R} + \bar{\ell}_{L} \, M_{\ell} \, \ell_{R} \right\} \\ &+ \frac{1}{v} \left(S_{2} + iS_{3}\right) \left\{ \bar{u}_{L} \, Y_{u} \, u_{R} + \bar{d}_{L} \, Y_{d} \, d_{R} + \bar{\ell}_{L} \, Y_{\ell} \, \ell_{R} \right\} \\ &+ \frac{\sqrt{2}}{v} \, H^{+} \left\{ \bar{u}_{L} \, V \, Y_{d} \, d_{R} - \bar{u}_{R} \, Y_{u}^{\dagger} \, V \, d_{L} + \bar{\nu}_{L} \, Y_{\ell} \, \ell_{R} \right\} + \text{h.c.} \,, \end{split}$$

$$-\mathcal{L}_{Y} = \sum_{i,f} \left(\frac{y_{f}^{\varphi_{i}^{0}}}{v}\right) \varphi_{i}^{0} \left[\bar{f} M_{f} \mathcal{P}_{R} f\right] + \left(\frac{\sqrt{2}}{v}\right) H^{+} \left[\bar{u} \left\{\varsigma_{d} V M_{d} \mathcal{P}_{R} - \varsigma_{u} M_{u}^{\dagger} V \mathcal{P}_{L}\right\} d + \varsigma_{\ell} \bar{\nu} M_{\ell} \mathcal{P}_{R} \ell\right] + \text{h.c.}$$

$$\begin{aligned} y_u^H &= -\sin\tilde{\alpha} + \varsigma_u^* \,\cos\tilde{\alpha} \,, \qquad y_u^h = \cos\tilde{\alpha} + \varsigma_u^* \,\sin\tilde{\alpha} \,, \qquad y_u^A = -i\varsigma_u^* \,, \\ y_{d,\ell}^H &= -\sin\tilde{\alpha} + \varsigma_{d,\ell} \,\cos\tilde{\alpha} \,, \qquad y_{d,\ell}^h = \cos\tilde{\alpha} + \varsigma_{d,\ell} \,\sin\tilde{\alpha} \,, \qquad y_{d,\ell}^A = i\varsigma_{d,\ell} \,. \end{aligned}$$

$$\begin{split} \text{Type I: } \varsigma_u &= \varsigma_d = \varsigma_\ell = \cot\beta, \quad \text{Type II: } \varsigma_u = -\frac{1}{\varsigma_d} = -\frac{1}{\varsigma_\ell} = \cot\beta, \quad \text{Inert: } \varsigma_u = \varsigma_d = \varsigma_\ell = 0\,, \\ \text{Type X: } \varsigma_u &= \varsigma_d = -\frac{1}{\varsigma_\ell} = \cot\beta \quad \text{ and } \quad \text{Type Y: } \varsigma_u = -\frac{1}{\varsigma_d} = \varsigma_\ell = \cot\beta\,. \end{split}$$

Constraints and Fits

Package: HEPfit (Bayesian approach)

Priors							
$M_{H^{\pm}} \subset [0.125, \ 1.0 \ (1.5)] \text{ TeV}$		$M_H \subset [0.125, 1.0 \ (1.5)] \text{ TeV}$ $M_A \subset [0.12$.125, 1.0 (1.5)] TeV			
$\lambda_2 \subset [0, 11]$		$\lambda_3 \subset$ [-3, 17]		$\lambda_7 \subset$ [-5, 5]			
$ ilde{lpha} \subset$ [-0.16, 0.16]	$\varsigma_u \subset [-1.$	5, 1.5]	$\varsigma_d \subset$ [-50, 50]	$\varsigma_\ell \subset$	[-100, 100]		

☑ Linear prior on masses.

Ranges for quartic couplings and alignment parameters are chosen from theoretical constraints.

 \boxtimes Range of $\tilde{\alpha}$ is chosen to incorporate the 5 σ region.

■ Taken the experimental values of CKM matrix element carefully and fitted the Wolfenstein parameters.

1. Theoretical Constraints

Stability of Scalar Potential

• Z₂-sym cases: $\lambda_{1,2} > 0$, $\lambda_3 + \sqrt{\lambda_1 \lambda_2} > 0$, $\lambda_3 + \lambda_4 - |\lambda_5| + \sqrt{\lambda_1 \lambda_2} > 0$.

• Bounded from below: $V = -M_{\mu} r^{\mu} + \frac{1}{2} \Lambda^{\mu}_{\ \nu} r_{\mu} r^{\nu}$, where,

$$\begin{split} \mathsf{M}_{\mu} &= \left(-\frac{\mu_{1}+\mu_{2}}{2}, -\mathsf{Re}\,\mu_{3}, \,\mathsf{Im}\,\mu_{3}, -\frac{\mu_{1}-\mu_{2}}{2} \right), \\ \mathbf{r}^{\mu} &= \left(|\Phi_{1}|^{2}+|\Phi_{2}|^{2}, \, 2\,\mathsf{Re}(\Phi_{1}^{\dagger}\Phi_{2}), \, 2\,\mathsf{Im}(\Phi_{1}^{\dagger}\Phi_{2}), \, |\Phi_{1}|^{2}-|\Phi_{2}|^{2} \right), \\ \mathsf{\Lambda}^{\mu}_{\ \nu} &= \frac{1}{2} \begin{pmatrix} \frac{1}{2}(\lambda_{1}+\lambda_{2})+\lambda_{3} & \mathsf{Re}(\lambda_{6}+\lambda_{7}) & -\mathsf{Im}(\lambda_{6}+\lambda_{7}) & \frac{1}{2}(\lambda_{1}-\lambda_{2}) \\ -\mathsf{Re}(\lambda_{6}+\lambda_{7}) & -\lambda_{4}-\mathsf{Re}\lambda_{5} & \mathsf{Im}\lambda_{5} & -\mathsf{Re}(\lambda_{6}-\lambda_{7}) \\ \mathsf{Im}(\lambda_{6}+\lambda_{7}) & \mathsf{Im}\lambda_{5} & -\lambda_{4}+\mathsf{Re}\lambda_{5} & \mathsf{Im}(\lambda_{6}-\lambda_{7}) \\ -\frac{1}{2}(\lambda_{1}-\lambda_{2}) & -\mathsf{Re}(\lambda_{6}-\lambda_{7}) & \mathsf{Im}(\lambda_{6}-\lambda_{7}) & -\frac{1}{2}(\lambda_{1}+\lambda_{2})+\lambda_{3} \end{pmatrix} \end{split}$$

 \checkmark The necessary & sufficient conditions for bounded below potential :

- 1. All the eigenvalues $(\Lambda_{0,1,2,3})$ of $\Lambda^{\mu}{}_{\nu}$ are real.For several necessary conditions:2. $\Lambda_0 > 0$ with $\Lambda_0 > \Lambda_i \forall i \in \{1,2,3\}$.H. Bahl, et al., JHEP 03 (2023) 165
- <u>Absolute stability:</u> $D = Det[\xi \mathbb{I}_4 \Lambda^{\mu}{}_{\nu}] = -\prod_{k=0}^3 (\xi \Lambda_k)$ with $\xi = \frac{m_{H^{\pm}}^2}{v^2}$.

✓ The conditions for global minimum : 1) D > 0, or 2) D < 0 with $\xi > \Lambda_0$.

Ivanov, PRD 75 (2007) 035001; Ivanov and Silva, PRD 92 (2015) 055017

LO Perturbativity

- O Tree-level partial-wave amplitudes: $(\mathcal{A}_0)_{i,f} = \frac{1}{16\pi s} \int_{-s}^{0} dt \ \mathcal{M}_{i \to f}(s,t)$
- O Eigenvalues in the j th partial wave: $(a_0^j)^2 \le 1/4$
- O There are fourteen neutral, eight single-charged and three doubly-charged two-body scalar 2 \rightarrow 2 scattering states. $\implies a_0^{(0,+1,+2)} = \frac{1}{16\pi} (\oplus \{X_{Y,\sigma}\})$ $X_{(1,0)} = \lambda_3 - \lambda_4 \,,$ $X_{(1,1)} = \begin{pmatrix} \lambda_1 & \lambda_5 & \sqrt{2}\lambda_6 \\ \lambda_5^* & \lambda_2 & \sqrt{2}\lambda_7^* \\ \sqrt{2}\lambda_6^* & \sqrt{2}\lambda_7^* & \lambda_3 + \lambda_4 \end{pmatrix}, \quad X_{(0,1)} = \begin{pmatrix} \lambda_1 & \lambda_4 & \lambda_6 & \lambda_6^* \\ \lambda_4 & \lambda_2 & \lambda_7 & \lambda_7^* \\ \lambda_6^* & \lambda_7^* & \lambda_3 & \lambda_7^* \\ \lambda_6 & \lambda_7^* & \lambda_3 & \lambda_7^* \\ \lambda_6 & \lambda_7 & \lambda_7 & \lambda_7 \end{pmatrix},$ $X_{(0,0)} = \begin{pmatrix} 3\lambda_1 & 2\lambda_3 + \lambda_4 & 3\lambda_6 & 3\lambda_6^* \\ 2\lambda_3 + \lambda_4 & 3\lambda_2 & 3\lambda_7 & 3\lambda_7^* \\ 3\lambda_6^* & 3\lambda_7^* & \lambda_3 + 2\lambda_4 & 3\lambda_5^* \\ 3\lambda_6 & 3\lambda_7 & 3\lambda_5 & \lambda_3 + 2\lambda_4 \end{pmatrix}.$ **O** Eigenvalues of $X_{(a,b)}$: $|e_i| < 8\pi$

Ginzburg, Ivanov, PRD 72 (2005) 115010; H. Bahl, et al., JHEP 03 (2023) 165

O Charged scalar coupling to fermions:

$$\sqrt{2} |\varsigma_f| m_f / v < 1$$

Stability & Perturbativity Fits

2. Signal Strength

Signal Strength

SM Higgs Production channels at LHC

ATLAS, Nature 607(2022) 52-59

Signal strength:
$$\mu_{XY} = \frac{\sigma(pp \to h) Br(h \to XY)}{[\sigma(pp \to h) Br(h \to XY)]_{SM}}$$

Modifications: $hVV \to \cos \alpha$ and $hff \to \varsigma_{u,d,l}$

Data: ATLAS and CMS (8 TeV and 13 TeV)

3. EWPO

EWPO

★ We remove $R_b = \frac{\Gamma(Z \to b\bar{b})}{\Gamma(Z \to hadrons)}$ from the global fit of EW precision data to fit S,T,U. ★ Fitting with S,T,U and fitting with S,T (assuming negligible U) provide similar results.

- ✤ M_W (PDG): PDG, PTEP 2022 (2022) 083C01
- ✤ M_W (CDF): CDF, Science 376 (2022) 170; Blas, et al. PRL 129 (2022) 271801

4. Flavour Observables

Loop Processes: ΔM_{B_s} , $B \to X_s \gamma$ and $B_s \to \mu \mu$

■ Tree level Processes: $B \to \tau \nu$, $D_{(s)} \to \tau \nu$, $D_{(s)} \to \mu \nu$, $\frac{\Gamma(K \to \mu \nu)}{\Gamma(\pi \to \mu \nu)}$, $\frac{\Gamma(\tau \to K \nu)}{\Gamma(\tau \to \pi \nu)}$

Anomaly: $(g - 2)_{\mu}$ [Not included in global fits]

Data: PDG PDG, PTEP 2022 (2022) 083C01

We fit the CKM parameters form the observables that are not contaminated by the presence of additional scalars.

Flavour Observables

m_H±

m_{H±}

800 1000 1200 1400 m_H=

Flavour Observables: muon g-2

5. Direct Searches

Direct Searches

- $pp \rightarrow \phi_i \rightarrow hh$
- $pp \rightarrow \phi_i \rightarrow hZ$
- $pp \rightarrow \phi_i \rightarrow \phi_j Z$
- $pp \rightarrow \phi_i \rightarrow VV$
- $pp \rightarrow \phi_i \rightarrow Z\gamma$
- $pp \rightarrow \phi_i \rightarrow f\bar{f}$
- $pp \rightarrow H^+ \rightarrow f'\bar{f}$

Data: CMS & ATLAS 8 TeV and 13 TeV

Scalar production: cern twiki Scalar Decay: HDECAY Pseudoscalar: Madgraph5_aMC@NLO, HIGLU, HDECAY

Global Fits

Global Fits

Global Fits

Marginalised Individual results								
Masses up to 1 TeV								
$M_{H^{\pm}} \ge 390 { m GeV} (95\%)$	$M_H \ge 410$ GeV ($M_H \ge 410 { m GeV} (95\%)$		$M_A \ge 370 { m GeV} (95\%)$				
$\lambda_2: 3.2 \pm 1.9$	λ_3 : 5.9 \pm 3.5	$\lambda_3: 5.9 \pm 3.5$		$\lambda_7: 0.0 \pm 1.1$				
$ ilde{lpha}$: (0.05 ± 21.0) \cdot 10 ⁻³	ς_u : 0.006 ± 0.257	$: 0.006 \pm 0.257$ $\varsigma_d : 0.12$		± 4.12 $\varsigma_{\ell}: -0.39 \pm 11.69$				
Masses up to 1.5 TeV								
$M_{H^{\pm}} \ge 480 { m GeV} (95\%)$	$M_H \ge 490 { m GeV}$ (9)	$M_H \ge 490 { m GeV} (95\%)$		$M_A \ge 480 { m GeV} (95\%)$				
$\lambda_2: \ 3.2 \pm 1.9$	λ_3 : 5.9 \pm 3.8	λ_3 : 5.9 \pm 3.8		$\lambda_7: 0.0 \pm 1.2$				
$ ilde{lpha}$: (0.8 ± 16.8) \cdot 10 ⁻³	$\varsigma_u : -0.011 \pm 0.407$	ς_d : -0.096 ± 6.22		ς_ℓ : -1.18 ± 17.54				

Thank you for your attention!!