

Search for supersymmetric particle pair production in final states with two oppositely charged leptons and large missing transverse momentum in proton-proton collisions

Instituto de Fisica de Cantabria (CSIC-Universidad de Cantabria)

On behalf of the CMS collaboration

RedLHC 2024, Madrid (Spain) May 29th, 2024

Supersymmetry in a nutshell

- ► A new space time symmetry → one superpartner companion per standard model (SM) particle.
- ► If R parity conserved → produced in pairs, Lightest supersymmetric particle stable
- Naturalness → gluinos, top squark (stop), and electroweakinos (charginos or neutralinos) at TeV scale

 Supersymmetry (SUSY) can solve multiple open questions both theoretical (great unification theory) or experimental (dark matter (DM) candidate)

Target of the Analysis

Search for direct chargino pair production and stop pair production in final states with two oppositely charged leptons:

3

 $\widetilde{\chi}_1^0$

 $\widetilde{\chi}_1^0$

T2tt with $m_w < \Delta m < m_{top}$ (three-body decays)

 $\overline{\tilde{t}}_1$

Additional interpretations:

Analysis Strategy

- Signal extraction strategy:
 - $_{\odot}$ Selecting events with two oppositely charged leptons and high p_{τ}^{miss}
 - Search regions (SRs) defined according to p_T^{miss} bins, b-tag content, and lepton flavour channels
 - \circ Simultaneous fit to observed m₁₂ distribution in all the SRs
 - Main backgrounds from top and WW production normalized at low m₁₂

Optimized Search Regions

 Chargino general search regions (TChipmSlepSnu, TChipmWW, TSlepSlep)

1	SR1 ^{0jet}	$\mathrm{SR1}^{\mathrm{jets}}_{\mathrm{0tag}}$	CR1 _{tags}	SR2 ^{0jet}	$\mathrm{SR2}^{\mathrm{jets}}_{\mathrm{0tag}}$	CR2 _{tags}	SR3 _{0tag}	CR3 _{tags}	SR4 _{0tag}	CR4 _{tags}
$p_{\rm T}^{\rm miss}$ [GeV]	160-220	160-220	160-220	220-280	220-280	220-280	280-380	380-380	\geq 380	\geq 380
$N_{\rm b \ jets}$	0	0	≥ 1	0	0	≥ 1	0	≥ 1	0	≥ 1
N _{iets}	0	≥ 1	≥ 1	0	≥ 1	≥ 1	≥ 0	≥ 1	≥ 0	≥ 1
Channels	SF, DF	SF, DF	SF, DF	SF, DF	SF, DF	SF, DF	SF, DF	SF, DF	SF, DF	SF, DF
$m_{\text{T2}}(\ell\ell) \qquad \qquad 0-20, 20-40, 40-60, 60-80, 80-100, 100-160, 160-240, 240-370. \geq 370 \text{ GeV}$										

Stop general search regions (T2tt, T2bW)

· · · · · · · · · · · · · · · · · · ·	SR1 _{0tag}	SR1 _{tags}	SR2 _{0tag}	SR2 _{tags}	SR3 _{0tag}	SR3 _{tags}	SR4 ^{ISR} _{0tag}	SR4 ^{ISR} _{tag}		
$p_{\rm T}^{\rm miss}$ [GeV]	160-220	160-220	220-280	220-280	280-380	280-380	≥ 380	≥ 380		
$N_{\rm b\ jets}$	0	≥ 1	0	≥ 1	0	≥ 1	0	≥ 1		
$N_{\rm jets}$	≥ 0	≥ 1	≥ 0	≥ 1	≥ 0	≥ 1	≥ 1	≥ 2		
ISR jets	≥ 0	≥ 0	≥ 0	≥ 0	≥ 0	≥ 0	≥ 1	≥ 1		
Channels	SF, DF	SF, DF	SF, DF	SF, DF	SF, DF	SF, DF	SF, DF	SF, DF		
$m_{T2}(\ell\ell)$	$m_{\text{T2}}(\ell\ell)$ 0-20, 20-40, 40-60, 60-80, 80-100, 100-160, \geq 160 GeV									

 We further merge the last m_{T2} bins dependent on the p_T^{miss} bin for the chargino SRs in order to avoid having no meaningful m_{T2} bins.

Background Estimation in CRs

 Control regions (CRs) for the validation of the m_{T2} tails in processes with m_w endpoint (top and WW):

- Events with $100 < p_T^{\text{miss}} < 140 \text{ GeV}$
- Effect of jet mismeasurement at high p_{T}^{miss} :
 - WZ→3L events, p_T of one Z's leptons added to p_T^{miss}
- Non-prompt leptons:
 - rate tested in same-sign events
 - \mathbf{m}_{T2} shape validated in events with a third (looser) lepton
- Control regions for sub-leading Z+X backgrounds (no m_w endpoint):
 - $_{0}$ WZ normalization: events with three leptons and p_{τ}^{miss} in SR threshold
 - o ZZ: reconstructed ZZ \rightarrow 4L events, one Z's p_T added to p_T^{miss}
 - o ttZ: from ttZ \rightarrow 4L events, Z's p_T added to p_T^{miss}
 - o DY: same flavour events with $|m_{\parallel}-m_{\chi}| < 15 \text{ GeV}$

CRs: 100<p_miss<140 GeV

For each year, we study events with:

- ► 100<p_miss<140 GeV
- split in terms of its b jet content,
- eµ channel

CRs: High p_T^{miss}

- We check the description of the tails of the m_{T2} distributions at high p_T^{miss} for backgrounds with m_w endpoint in WZ events:
 - Event selected with three leptons
 - Candidate Z with $|m_{\parallel}-m_{Z}| < 15 \text{ GeV}$
 - Adding to p_T^{miss} the p_T of the Z lepton with same charge as the third lepton
 - Selecting events with $p_T^{miss} > 160 \text{ GeV}$
 - m_{T2} is computed with the other two leptons

Slight excess in the last bins quantified by fitting the ratio of the (background-subtracted) observed events to the expected WZ events, using a linear function.

Non-prompt Lepton Rate

- Rate of non-prompt leptons tested in same-sign events for each year.
 - Around 10-40% excess in data
 - Uncertainty calculated by taking the largest difference from the central value of a linear fit on several variables (jet-p_T, n_{jets} n_{b-jets}, or p_T^{miss}...)

year		value
2016	HIPM	1.18 ± 0.30
2010	noHIPM	1.10 ± 0.40
2017		1.38 ± 0.29
2018		1.36 ± 0.25

- m_{T2} shape validated in events with a third "looser" lepton and $p_T^{miss} > 160$ GeV:
 - Swapping the loose lepton with one of the two "tight" ones and recomputing m₁₂
 - $_{\rm O}$ Reasonable agreement between the recomputed $_{\rm T2}$ shape in data and simulations

- WZ background is probed in events with three leptons and p_T^{miss} >160 GeV:
 - To constrain its normalisation, regions are included to the fit used for the signal, with the same p_T^{miss} and jet multiplicity bins.
- Shapes are validated by looking at m₁₂ distributions:
 - To prevent normalisation bias, WZ events are normalized to data in the same CR bins used in the fit
 - $_{\rm 0}$ Hint for slight background overprediction at very high $\rm m_{_{T2}}$ values
 - → A systematic uncertainty is added to cover from this effect

- ► Modeling of events from ZZ → $2L2\nu$ process tested reconstructing ZZ → 4L events, and adding one Z boson's p_T to the p_T^{miss}
 - MC to data normalisation studied year by year in p₁^{miss} and n_{jet} variables, similarly to the WZ case
- The variable m_{T2} has been validated using ZZ \rightarrow 2L2v events and p_T^{miss} >160 GeV, for the combination of the three years.
 - As for the WZ, the ZZ events are normalized to data.
 - o Good agreement within the limited statistics

ttZ Events

- Control region for normalisation taken from ttZ with Z→Lv events, with at least 3 leptons, two of them within the Z window, and at least one b-tagged jet (2 if exactly 3 leptons), year by year.
 - MC found to underpredict data
 - → Introduced in the ML fit in p_T^{miss} bins.
- m_{T2} shape description tested in events with 4 leptons and no b-tagged jets:
 - \circ $\ensuremath{\,{\rm p}_{\rm T}}\xspace$ from reconstructed candidate Z added to $\ensuremath{{\rm p}_{\rm T}}\xspace^{\rm miss}$
 - No bias observed within the limited statistics

Drell-Yan Production

Testing modeling of Drell-Yan production by reversing the Z veto in SF events year by year:

Yields in the Search Regions

 Example expected signal and background yields in some of the studied SRs

Runll observed Limits: Chargino

5

 Observed and expected limits from 2016, 2017 and 2018 combination

Runll observed Limits: Stop

 Observed and expected limits from 2016, 2017 and 2018 combination

Runll observed Limits: TSlepSlep

 Observed and expected limits from 2016, 2017 and 2018 combination

Summary and Future Steps

- An analysis probing for several SUSY models is in place:
 - Signal regions are optimised.
 - Backgrounds well understood
 - Results obtained for several SUSY models.
 - → No significant deviations found with respect to expectation
- Currently going through the last steps of the CMS' internal reviewing process.
 - → Targeting the summer conferences (ICHEP)

Backup Material

Full list of triggers

Data set	Run range	HLT path
MuonEG	[271036, 278272]	HLT_Mu8_TrkIsoVVL_Ele23_CaloIdL_TrackIdL_IsoVL_v*
		$HLT_Mu23_TrkIsoVVL_Ele12_CaloIdL_TrackIdL_IsoVL_v^*$
	[278273,278807]	HLT_Mu12_TrkIsoVVL_Ele23_CaloIdL_TrackIdL_IsoVL_DZ_v*
		$HLT_Mu23_TrkIsoVVL_Ele12_CaloIdL_TrackIdL_IsoVL_DZ_v^*$
DoubleMuon	[271036, 278807]	HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_v*
		HLT_Mu17_TrkIsoVVL_TkMu8_TrkIsoVVL_v*
DoubleEG	[271036,278807]	HLT_Ele23_Ele12_CaloIdL_TrackIdL_IsoVL_DZ_v*
SingleMuon	[271036,278807]	HLT_IsoMu24_v*
		$HLT_{so}TkMu24_v*$
SingleElectron	[271036, 278807]	HLT_Ele27_WPTight_Gsf_v*
	18 - A. (1999) - A. (1999) - A.	HLT_Ele25_eta2p1_WPTight_Gsf_v*

2016 HIPM

20

Data set	Run range	HLT path
MuonEG	[278769,284044]	HLT_Mu12_TrkIsoVVL_Ele23_CaloIdL_TrackIdL_IsoVL_DZ_v*
		$HLT_Mu23_TrkIsoVVL_Ele12_CaloIdL_TrackIdL_IsoVL_DZ_v^*$
DoubleMuon	[278769,281612]	HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_v*
		HLT_Mu17_TrkIsoVVL_TkMu8_TrkIsoVVL_v*
	[281613,284044]	HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_DZ_v*
		HLT_Mu17_TrkIsoVVL_TkMu8_TrkIsoVVL_DZ_v*
DoubleEG	[278769,284044]	HLT_Ele23_Ele12_CaloIdL_TrackIdL_IsoVL_DZ_v*
SingleMuon	[278769,284044]	HLT_IsoMu24_v*
		HLT_IsoTkMu24_v*
SingleElectron	[278769,284044]	HLT_Ele27_WPTight_Gsf_v*
		HLT_Ele25_eta2p1_WPTight_Gsf_v*

Data set	Run range	HLT path
MuonEG	[297046, 299329]	HLT_Mu12_TrkIsoVVL_Ele23_CaloIdL_TrackIdL_IsoVL_DZ_v*
	•	$HLT_Mu23_TrkIsoVVL_Ele12_CaloIdL_TrackIdL_IsoVL_DZ_v^*$
	[299368, 306462]	HLT_Mu12_TrkIsoVVL_Ele23_CaloIdL_TrackIdL_IsoVL_DZ_v*
		$HLT_Mu23_TrkIsoVVL_Ele12_CaloIdL_TrackIdL_IsoVL_v^*$
DoubleMuon	[297046, 299329]	HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_DZ_v*
	[299368,306462]	HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_DZ_Mass8_v*
DoubleEG	[297046, 306462]	$HLT_Ele23_Ele12_CaloIdL_TrackIdL_IsoVL_v^*$
SingleMuon	[297046, 306462]	HLT_IsoMu27_v*
SingleElectron	[297046, 306462]	HLT_Ele35_WPTight_Gsf_v*

Data set	Run range	HLT path
MuonEG	[315252, 325175]	HLT_Mu12_TrkIsoVVL_Ele23_CaloIdL_TrackIdL_IsoVL_DZ_v*
	54 E E	HLT_Mu23_TrkIsoVVL_Ele12_CaloIdL_TrackIdL_IsoVL_v*
DoubleMuon	[315252, 325175]	HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_DZ_Mass3p8_v*
EGamma	[315252, 325175]	HLT_Ele23_Ele12_CaloIdL_TrackIdL_IsoVL_v*
	52 E. E.	$HLT_Ele32_WPTight_Gsf_v^*$
SingleMuon	[315252, 325175]	HLT_IsoMu24_v*

2018

2016 noHIPM

Trigger efficiencies

21

0.95

0.9

0.8

0.75

0.7

2016HIPM

2016noHIPM

Trigger efficiencies

2018

22

0.95

0.9

0.85

0.8

0.75

0.7

Lepton scale factors

Table with selection cuts applied per lepton for the lepton scale factors obtained from the Tag and Probe method

	Electrons	Muons
Event	$60 < m_{\ell\ell} < 120 \mathrm{GeV}$	$70 < m_{\ell\ell} < 130 \mathrm{GeV}$
selection	HLT_Ele35(27/32)_WPTight_Gsf	$HLT_IsoMu27(24)$
Taglopton	analysis electron	analysis muon
rag lepton	match trigger primitive	match trigger primitive
Probe lepton	cut based medium ID	medium ID and $I_{\rm rel} < 0.15$
Cuts to	$ d_0 < 0.05 \mathrm{cm}, d_z < 0.10 \mathrm{cm},$	$ d_0 < 0.05 \mathrm{cm}, d_z < 0.10 \mathrm{cm},$
probe	$S_{3\mathrm{D}}^{\mathrm{d}} < 4, N_{\mathrm{miss.\ hits}}^{inn.tracker} = 0$	$S_{\rm 3D}^{\rm d} < 4$
Varring outo	tag MVA Iso wp90 ID	tag $I_{\rm rel} < 0.1, I_{\rm rel} < 0.3$
for	$p_{T}^{miss} < 50 GeV$	$p_{T}^{miss} < 50 GeV$
systematics	$N_{ m jets}=0$	$N_{ m jets}=0$
		$75 < m_{\ell\ell} < 140 \mathrm{GeV}, 65 < m_{\ell\ell} < 120 \mathrm{GeV}$

Lepton Additional Scale Factors

Electrons

Lepton Additional Scale Factors

Muons

CRs: $100 < p_T^{miss} < 140 \text{ GeV}$

26

- ► 100<p_miss<140 GeV</p>
- ► ≥1 b-tagged jets, eµ channel

$CRs: 100 < p_{T}^{miss} < 140 GeV$

27

- ► 100<p_miss<140 GeV
- ≥1jets but 0 b-tagged jets, eµ channel

CRs: 100<p_miss<140 GeV

28

- ► 100<p_miss<140 GeV
- no jets, eµ channel

CRs: $100 < p_T^{miss} < 140 \text{ GeV}$

29

Events with:

- ► 100<p_miss<140 GeV
- no jets, eµ channel

Postfit

CRs: 100<p_miss<140 GeV

30

- ► $100 < p_{\tau}^{\text{miss}} < 140 \text{ GeV}$
- ► ≥1jets but 0 b-tagged jets, eµ channel Postfit

CRs: $100 < p_T^{miss} < 140 \text{ GeV}$

31

- ► 100<p_miss<140 GeV
- ► ≥1jets, eµ channel Postfit

Summary of Included Systematics (Stop)

	$\frac{\text{SR1}}{160 \le p_{\text{T}}^{\text{miss}} < 220 \text{GeV}}$		$\frac{\text{SR2}}{220 \le p_{\text{T}}^{\text{miss}} < 280 \text{GeV}}$				SR3	SR4		
Source of uncertainty						$280 \leq p$	$T_{T}^{miss} < 380 GeV$	$p_{\rm T}^{\rm miss} \ge 380 {\rm GeV}$		
	Yields	$m_{T2}(\ell\ell)$ shape	Yields	$m_{T2}(\ell \ell)$ shap	pe	Yields	$m_{T2}(\ell\ell)$ shape	Yields	$m_{T2}(\ell \ell)$ shape	
Integrated luminosity	1-3%		1-3%			1-3%		1-3%	-	
Trigger efficiency	2%	< 1%	2%	< 1%		2%	< 1%	2%	< 1%	
Pileup	$\leq 2\%$	3-9%	$\leq 1\%$	2-12%		$\leq 1\%$	2-20%	< 1%	3-18%	
Jet energy scale	3-8%	3-10%	3-7%	2-8%		3-6%	2-5%	3-6%	3-7%	
Jet energy resolution	1-2%	2-8%	1-2%	2-8%		1-2%	2-5%	1-2%	2-8%	
Unclustered energy	1-2%	5-10%	1-2%	3-7%		1-2%	2-11%	1-2%	3-13%	
Prefiring	< 1%	$\leq 1\%$	1%	< 1%		< 1%	< 1%	< 1%	$\leq 1\%$	
Lepton reconstruction	< 1%	< 1%	< 1%	< 1%	4	< 1%	< 1%	< 1%	< 1%	
Lepton ident./isolation	2-4%	$\leq 2\%$	2-3%	$\leq 3\%$		1-3%	1-5%	2-4%	1-15%	
Lepton additional cuts	1%	$\leq 1\%$	1%	< 1%		1%	< 1%	1%	$\leq 1\%$	
b tagging	1-4%	$\leq 4\%$	1-5%	$\leq 4\%$		$\leq 5\%$	$\leq 2\%$	$\leq 3\%$	$\leq 6\%$	
b tagging (light jets)	< 1%	$\leq 2\%$	< 1%	$\leq 3\%$		< 1%	$\leq 1\%$	< 1%	$\leq 2\%$	
Simulated samples statistics	< 1%	4-18%	$\leq 2\%$	5-21%		1-2%	12-29%	1-3%	18-37%	
Renorm./fact. scales	2-3%	1-15%	5-6%	2-7%		10-16%	2-5%	13-23%	2-13%	
PDFs	< 1%	$\leq 1\%$	< 1%	$\leq 2\%$		< 1%	≤ 2%	≤ 2%	$\leq 9\%$	
Drell-Yan normalization	$\leq 5\%$	$\leq 26\%$	$\leq 6\%$	$\leq 16\%$		$\leq 7\%$	$\leq 8\%$	$\leq 7\%$	$\leq 7\%$	
tW normalization	< 1%	$\leq 2\%$	1%	$\leq 1\%$		1%	$\leq 1\%$	1-2%	1-3%	
Minor bkg. normalization	< 1%	1-5%	$\leq 1\%$	1-8%		$\leq 2\%$	1-3%	1-3%	1-5%	
$m_{T2}(\ell\ell)$ tails (m_W endpoint)	1-2%	5-14%	1%	6-16%		< 1%	5-14%	< 1%	5-20%	
$m_{T2}(\ell\ell)$ tails (WZ)		< 1%	< 1%	< 1%		1	~ _ \	< 1%	$\leq 7\%$	
Nonprompt leptons	< 1%	$\leq 8\%$	< 1%	$\leq 7\%$		< 1%	≤ 2%	< 1%	$\leq 3\%$	
tt $p_{\rm T}$ reweighting	1-2%	2-3%	2-4%	2-6%		2-4%	1-3%	2-6%	1-4%	

Systematic uncertainties for SM processes in the stop SRs

		SR1		SR2		SR3	191	SR4
Source of uncertainty	$160 \leq 100$	$p_{\rm T}^{\rm miss} < 220 {\rm GeV}$	$220 \leq$	$p_{\rm T}^{\rm miss} < 280 { m GeV}$	$280 \le 1$	$p_{\rm T}^{\rm miss} < 380 {\rm GeV}$	pT	$s \ge 380 \text{GeV}$
	Yields	$m_{T2}(\ell\ell)$ shape	Yields	$m_{T2}(\ell\ell)$ shape	Yields	$m_{T2}(\ell\ell)$ shape	Yields	$m_{T2}(\ell\ell)$ shape
Integrated luminosity	1-3%	2772	1-3%	-/ /	1-3%	- /	1-3%	1.1
Trigger efficiency	2%	< 1%	2%	< 1%	2%	< 1%	2%	< 1%
Pileup	$\leq 1\%$	1-3%	$\leq 2\%$	1-7%	$\leq 2\%$	1-7%	$\leq 2\%$	$\leq 7\%$
Jet energy scale	$\leq 4\%$	1-4%	$\leq 5\%$	2-6%	$\leq 4\%$	2-6%	$\leq 4\%$	2-7%
Jet energy resolution	< 1%	1-4%	< 1%	1-4%	$\leq 1\%$	1-3%	< 1%	1-5%
Unclustered energy	< 1%	1-4%	< 1%	1-7%	$\leq 1\%$	2-6%	< 1%	1-7%
Prefiring	< 1%	< 1%	1%	< 1%	< 1%	< 1%	< 1%	$\leq 1\%$
Lepton reconstruction	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%
Lepton ident./isolation	1-3%	≤ 2%	1-3%	$\leq 3\%$	1-4%	≤ 2%	1-3%	1-6%
Lepton additional cuts	1%	< 1%	1%	< 1%	1%	< 1%	1%	< 1%
b tagging	1%	< 1%	1%	< 1%	1%	< 1%	$\leq 1\%$	< 1%
b tagging (light jets)	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%
Simulated samples statistics	1-3%	4-7%	2-4%	6-13%	3-5%	8-16%	3-5%	10-16%
Renorm./fact. scales	< 1%	< 1%	1%	< 1%	1-2%	< 1%	2%	$\leq 1\%$
Nonprompt leptons	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%
ISR reweighting	2-3%	2-3%	4-5%	1-3%	5-6%	$\leq 2\%$	6-8%	$\leq 4\%$
Lepton ident./isolation (FASTSIM)	4.0%	/ / -	4.0%		4.0%		4.0%	
b tagging (FASTSIM)	< 1%	<1%	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%
p _T ^{miss} (FASTSIM)	$\leq 5\%$	2-8%	$\leq 6\%$	$\leq 14\%$	$\leq 5\%$	3-18%	4-8%	4-15%

Systematic uncertainties for stop pair production (m_s=400 GeV, m_x=275GeV)

CRs: High p_T^{miss}

- We check the description of the tails of the m_{T2} distributions at high p_T^{miss} for backgrounds with mW endpoint in WZ events:
 - Event selected with three leptons
 - Candidate Z with $|m_{\parallel}-m_{7}| < 15 \text{ GeV}$
 - Adding to p_T^{miss} the p_T of the Z lepton with same charge as the third lepton
 - Selecting events with $p_T^{miss} > 160 \text{ GeV}$
 - m_{T2} is computed with the other two leptons

CRs: High p_T^{miss}

Slight excess in the last bins quantified by fitting the ratio of the (background-subtracted) observed events to the expected WZ events, using a linear function.

- Result of the fit taken to correct m_{T2} modelling of WZ events
- Errors in the fit taken as uncertainties in the correction

Nonprompt Lepton Rate

year		value
2016	HIPM	1.18 ± 0.30
2010	noHIPM	1.10 ± 0.40
2017		1.38 ± 0.29
2018		1.36 ± 0.25

- Rate of nonprompt leptons tested in same-sign events
 - Around 10-40% excess in data
- Uncertainty calculated by taking the largest difference from the central value of a linear fit vs several kinematic <u>variables</u>

Nonprompt Lepton Rate Example distributions

Non-Prompt Scale Factors

Plots for the non-prompt scale factors split by year:

M_{T2} Shape Nonprompt Lepton

- Modelling of nonprompt leptons in m_{T2} shape validated in events with a third "looser" lepton:
 - Swapping the loose lepton with one of the two "tight" ones and recomputing m₁₂
 - Reasonable agreement
 between the recomputed m₁₂
 shape in data and simulations

- WZ background is probed in events with three leptons and p_T^{miss}>160 GeV:
 - $\circ~$ To constrain its normalisation, regions are included to the fit used for the signal, with the same p_{τ}^{miss} and jet multiplicity bins.

Plots for WZ scale factors (2017):

Plots for WZ scale factors (2018):

WZ Production (m_{τ_2} Shape)

- We look at m_{τ_2} distribution:
 - tribution: To prevent normalisation bias, WZ 0 events are normalized to data in the same CR bins used in the fit
- Hint for background overprediction at very high m_{τ_2} values
 - A systematic uncertainty is added to cover from this effect

- Modeling of events from ZZ \rightarrow 2L2Nu process tested reconstructing ZZ \rightarrow 4L events, and adding one Z boson's p_T to the p_T^{miss}
 - MC to data normalisation studied year by year in p_T^{miss} and njet variables, similarly to the WZ case :

Plots for ZZ scale factors (2016):

Plots for ZZ scale factors (2017):

ZZ Production (m_{T2} Shape)

- ► The variable m_{T_2} has been checked for ZZ→2l2v events and p_T^{miss} >160, for the three year combination.
 - Similarly to the WZ, the ZZ events are normalized to data.
 - Good agreement within the limited statistics

ttZ Events

- Control region for normalisation taken from: ttZ with Z→lv, with at least 3 leptons, two of them within the Z window, and at least one b-tagged jet (two if exactly three leptons)
 - MC underpredicts the data → introduced in the ML fit in p_T^{miss} bins.
- m_{T2} shape description tested in events with 4 leptons and no b-tagged jets:
 - \circ $\ensuremath{\,{\rm p}_{\rm T}}\xspace$ from reconstructed candidate Z added to $\ensuremath{{\rm p}_{\rm T}}\xspace^{\rm miss}$
 - No bias observed within the limited statistics

ttZ Events

Plots for the rest of ttZ scale factors:

2016

2018

<mark>48</mark>

Drell-Yan Production

Testing modeling of Drell-Yan production by reversing the Z veto in SF events:

<mark>4</mark>9

Mismodeling found for 2017 EOY no longer found in UL.

EE Noise in 2017 data (UL vs EOY)

 EE Noise found in 2017 data greatly reduced in UL

- We still find some mismodelling, as shown in the H_T (with n_{bjets} ≥1)
 - → Veto H₁>60 GeV

N.b. H_T forward soft = Sum of jet p_T 's, for jets with 2.650< | n_{jet} | <3.139 and raw p_T <50 GeV

<mark>5</mark>0

EOY vs UL Drell-Yan Production

Mismodeling found for 2017 EOY no longer found in UL.

Electrons in 100<p_miss<160 GeV Sideband region

Electrons in 100<p_miss<160 GeV Sideband region

Muons in 100<p_miss<160 GeV Sideband region

Muons in 100<p_miss<160 GeV Sideband region

Summary of included systematics (Chargino SRs)

56

		SR1		SR2		SR3		SR4
Source of uncertainty	$160 \le 100$	$p_{\rm T}^{\rm miss} < 220 {\rm GeV}$	$220 \le 1$	$p_{\rm T}^{\rm miss} < 280 { m GeV}$	$280 \le 100$	$p_{\rm T}^{\rm miss} < 380 {\rm GeV}$	$p_{\rm T}^{\rm miss}$	$\geq 380 \text{GeV}$
	Yields	$m_{T2}(\ell\ell)$ shape	Yields	$m_{T2}(\ell\ell)$ shape	Yields	$m_{T2}(\ell \ell)$ shape	Yields	$m_{T2}(\ell\ell)$ shape
Integrated luminosity	1-3%	_	1-3%	2 <u></u> 1	1-3%	<u></u>	1-3%	1 <u>0 - 1</u> 11
Trigger efficiency	2%	< 1%	2%	$\leq 1\%$	2%	< 1%	2%	$\leq 2\%$
Pileup	$\leq 4\%$	3-9%	$\leq 3\%$	3-19%	$\leq 1\%$	2-13%	< 1%	5-13%
Jet energy scale	1-6%	3-10%	$\leq 6\%$	2-10%	3-5%	2-8%	3-4%	2-9%
Jet energy resolution	1-5%	2-6%	1-3%	2-7%	1-2%	1-5%	1-2%	2-8%
Unclustered energy	1-5%	5-8%	2-5%	3-7%	1%	2-4%	1-2%	4-6%
Prefiring	1%	< 1%	1-2%	$\leq 3\%$	1%	< 1%	$\leq 1\%$	1-2%
Lepton reconstruction	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%
Lepton ident./isolation	2-5%	$\leq 5\%$	2-4%	1-5%	2-3%	1-5%	2-4%	1-11%
Lepton additional cuts	1-2%	< 1%	1-2%	$\leq 1\%$	1%	<u>≤ 2%</u>	1%	$\leq 2\%$
b tagging	3-5%	2-4%	3-5%	2-5%	2-4%	2-4%	2-3%	2-3%
b tagging (light jets)	< 1%	< 1%	< 1%	$\leq 6\%$	< 1%	< 1%	< 1%	$\leq 2\%$
Simulated samples statistics	$\leq 6\%$	4-22%	1-10%	11-58%	1-2%	11-27%	2-3%	15-46%
Renorm./fact. scales	2-4%	1-4%	4-6%	3-12%	9%	5-6%	12-13%	8-10%
PDFs	$\leq 1\%$	1-2%	1-2%	1-5%	1%	1-3%	2%	2-4%
Drell-Yan normalization	1-7%	3-22%	$\leq 6\%$	2-23%	4-7%	4-11%	4-7%	4-8%
tW normalization	1%	≤ 2%	1-2%	1-2%	1%	1%	1%	1-2%
Minor bkg. normalization	1-2%	1-3%	1-3%	1-9%	2%	1-3%	2-3%	1-6%
$m_{T2}(\ell\ell)$ tails (m_W endpoint)	1-3%	4-14%	1-5%	5-21%	1%	8-22%	1-2%	11-35%
$m_{T2}(\ell\ell)$ tails (WZ)	- \	<1%	< 1%	$\leq 1\%$	< 1%	$\leq 2\%$	< 1%	$\leq 16\%$
Nonprompt leptons	< 1%	≤2%	<1%	$\leq 3\%$	< 1%	$\leq 6\%$	< 1%	$\leq 2\%$
tt pT reweighting	1%	1-3%	1-2%	2-4%	2%	4%	2%	4-5%

Systematic uncertainties for SM processes in the chargino SRs

	$\frac{\text{SR1}}{160 \le p_{\text{T}}^{\text{miss}} < 220 \text{GeV}}$		$\frac{\text{SR2}}{220 \le p_{\text{T}}^{\text{miss}} < 280 \text{GeV}}$			SR3	SR4	
Source of uncertainty					$280 \le p_{\mathrm{T}}^{\mathrm{miss}} < 380 \mathrm{GeV}$		$p_{\rm T}^{\rm miss} \ge 380 { m GeV}$	
	Yields	$m_{T2}(\ell\ell)$ shape	Yields	$m_{T2}(\ell \ell)$ shape	Yields	$m_{T2}(\ell \ell)$ shape	Yields	$m_{T2}(\ell \ell)$ shape
Integrated luminosity	1-3%	-	1-3%	—	1-3%	_	1-3%	
Trigger efficiency	2%	< 1%	2%	< 1%	2%	< 1%	2%	< 1%
Pileup	1-4%	1-4%	$\leq 3\%$	1-4%	$\leq 2\%$	$\leq 2\%$	$\leq 3\%$	1-3%
Jet energy scale	1-5%	1-10%	1-5%	1-9%	$\leq 2\%$	1-6%	$\leq 3\%$	$\leq 6\%$
Jet energy resolution	$\leq 3\%$	1-10%	$\leq 2\%$	1-12%	< 1%	1-14%	< 1%	$\leq 5\%$
Unclustered energy	$\leq 2\%$	2-10%	$\leq 3\%$	2-8%	< 1%	1-8%	< 1%	$\leq 3\%$
Prefiring	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%
Lepton reconstruction	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%
Lepton ident./isolation	2-6%	1-2%	2-6%	$\leq 3\%$	3-6%	$\leq 1\%$	3-7%	$\leq 3\%$
b tagging	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%
b tagging (light jets)	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%
Simulated samples statistics	6-14%	9-21%	5-15%	9-22%	3-7%	8-16%	3-6%	6-21%
Renorm./fact. scales	< 1%	$< 1^{\circ}$	$\leq 1\%$	< 1%	< 1%	< 1%	< 1%	< 1%
Nonprompt leptons	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%
ISR reweighting	1-2%	$\leq 2\%$	1-2%	$\leq 5\%$	$\leq 2\%$	1-4%	$\leq 2\%$	1-5%
Lepton ident./isolation (FASTSIM)	4.0%	—	4.0%		4.0%		4.0%	<u></u>
b tagging (FASTSIM)	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%
p_T^{miss} (FASTSIM)	$\leq 11\%$	2-24%	< 7%	$\leq 13\%$	1-2%	< 9%	$\leq 2\%$	1-8%

Systematic uncertainties for chargino pair production (m_c=800 GeV, m_x=200GeV)

Summary of Included Systematics (Stop)

		SR1		SR2		SR3	SR4		
Source of uncertainty	$160 \le p_{\mathrm{T}}^{\mathrm{miss}} < 220 \mathrm{GeV}$		22 0 ≤	$p_{\rm T}^{\rm miss} < 280 {\rm GeV}$	280 ≤	$p_{\rm T}^{\rm miss} < 380 { m GeV}$	$p_{\rm T}^{\rm miss} \ge 380 {\rm GeV}$		
	Yields	$m_{T2}(\ell\ell)$ shape	Yields	$m_{T2}(\ell\ell)$ shape	e Yield	s $m_{T2}(\ell \ell)$ shape	Yields	$m_{T2}(\ell \ell)$ shape	
Integrated luminosity	1-3%		1-3%		1-3%		1-3%	_	
Trigger efficiency	2%	< 1%	2%	< 1%	2%	< 1%	2%	< 1%	
Pileup	$\leq 2\%$	3-9%	$\leq 1\%$	2-12%	$\leq 1\%$	2-20%	< 1%	3-18%	
Jet energy scale	3-8%	3-10%	3-7%	2-8%	3-6%	2-5%	3-6%	3-7%	
Jet energy resolution	1-2%	2-8%	1-2%	2-8%	1-2%	2-5%	1-2%	2-8%	
Unclustered energy	1-2%	5-10%	1-2%	3-7%	1-2%	2-11%	1-2%	3-13%	
Prefiring	< 1%	$\leq 1\%$	1%	< 1%	< 1%	< 1%	< 1%	$\leq 1\%$	
Lepton reconstruction	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%	
Lepton ident./isolation	2-4%	$\leq 2\%$	2-3%	$\leq 3\%$	1-3%	1-5%	2-4%	1-15%	
Lepton additional cuts	1%	$\leq 1\%$	1%	< 1%	1%	< 1%	1%	$\leq 1\%$	
b tagging	1-4%	$\leq 4\%$	1-5%	$\leq 4\%$	$\leq 5\%$	$\leq 2\%$	$\leq 3\%$	$\leq 6\%$	
b tagging (light jets)	< 1%	$\leq 2\%$	< 1%	$\leq 3\%$	< 1%	$\le 1\%$	< 1%	$\leq 2\%$	
Simulated samples statistics	< 1%	4-18%	$\leq 2\%$	5-21%	1-2%	12-29%	1-3%	18-37%	
Renorm./fact. scales	2-3%	1-15%	5-6%	2-7%	10-169	% 2-5%	13-23%	2-13%	
PDFs	< 1%	$\leq 1\%$	< 1%	$\leq 2\%$	< 1%	$\leq 2\%$	≤ 2%	$\leq 9\%$	
Drell-Yan normalization	$\leq 5\%$	$\leq 26\%$	$\leq 6\%$	$\leq 16\%$	$\leq 7\%$	≤ 8%	≤ 7%	$\leq 7\%$	
tW normalization	< 1%	$\leq 2\%$	1%	$\leq 1\%$	1%	$\leq 1\%$	1-2%	1-3%	
Minor bkg. normalization	< 1%	1-5%	$\leq 1\%$	1-8%	< 2%	1-3%	1-3%	1-5%	
$m_{T2}(\ell\ell)$ tails (m_W endpoint)	1-2%	5-14%	1%	6-16%	< 1%	5-14%	< 1%	5-20%	
$m_{T2}(\ell\ell)$ tails (WZ)	_	< 1%	< 1%	< 1%		$\geq - $	< 1%	< 7%	
Nonprompt leptons	< 1%	$\leq 8\%$	< 1%	$\leq 7\%$	< 1%	$\leq 2\%$	< 1%	< <u></u> ≤ 3%	
tt $p_{\rm T}$ reweighting	1-2%	2-3%	2-4%	2-6%	2-4%	1-3%	2-6%	1-4%	

Systematic uncertainties for SM processes in the stop SRs

	$\frac{\text{SR1}}{160 \le p_{\text{T}}^{\text{miss}} < 220 \text{GeV}}$		$\frac{\text{SR2}}{220 \le p_{\text{T}}^{\text{miss}} < 280 \text{GeV}}$		$\frac{SR3}{280 \le p_{\rm T}^{\rm miss}} < 380 {\rm GeV}$		$p_T^{miss} \ge 380 \text{ GeV}$	
Source of uncertainty								
	Yields	$m_{T2}(\ell\ell)$ shape	Yields	$m_{T2}(\ell \ell)$ shape	Yields	$m_{T2}(\ell\ell)$ shape	Yields	$m_{T2}(\ell\ell)$ shape
Integrated luminosity	1-3%	2772	1-3%	-/ /	1-3%	- /	1-3%	1.0-00
Trigger efficiency	2%	< 1%	2%	< 1%	2%	< 1%	2%	< 1%
Pileup	$\leq 1\%$	1-3%	$\leq 2\%$	1-7%	$\leq 2\%$	1-7%	≤ 2%	$\leq 7\%$
Jet energy scale	$\leq 4\%$	1-4%	$\leq 5\%$	2-6%	$\leq 4\%$	2-6%	$\leq 4\%$	2-7%
Jet energy resolution	< 1%	1-4%	< 1%	1-4%	$\leq 1\%$	1-3%	< 1%	1-5%
Unclustered energy	< 1%	1-4%	< 1%	1-7%	$\leq 1\%$	2-6%	< 1%	1-7%
Prefiring	< 1%	< 1%	1%	< 1%	< 1%	< 1%	< 1%	$\leq 1\%$
Lepton reconstruction	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%
Lepton ident./isolation	1-3%	≤ 2%	1-3%	<u>≤ 3%</u>	1-4%	≤ 2%	1-3%	1-6%
Lepton additional cuts	1%	< 1%	1%	< 1%	1%	< 1%	1%	< 1%
b tagging	1%	< 1%	1%	< 1%	1%	< 1%	$\leq 1\%$	< 1%
b tagging (light jets)	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%
Simulated samples statistics	1-3%	4-7%	2-4%	6-13%	3-5%	8-16%	3-5%	10-16%
Renorm./fact. scales	< 1%	< 1%	1%	< 1%	1-2%	< 1%	2%	$\leq 1\%$
Nonprompt leptons	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%
ISR reweighting	2-3%	2-3%	4-5%	1-3%	5-6%	$\leq 2\%$	6-8%	$\leq 4\%$
Lepton ident./isolation (FASTSIM)	4.0%	/ / -	4.0%		4.0%		4.0%	
b tagging (FASTSIM)	< 1%	<1%	< 1%	< 1%	< 1%	< 1%	< 1%	< 1%
p_miss (FASTSIM)	$\leq 5\%$	2-8%	$\leq 6\%$	$\leq 14\%$	$\leq 5\%$	3-18%	4-8%	4-15%

Systematic uncertainties for stop pair production (m_s=400 GeV, m_x=275GeV)

UL vs EOY yields in the Search Regions

58

We compared expected backgrounds yields in EOY and UL

- o Generally, UL has slightly higher estimates at low mt2ll
- Comparable estimates at large mt2ll

Table 38: Expected yields in the search region with $220 \le p_T^{\text{miss}} < 280 \text{ GeV}$ for events with two OC DF leptons, at least one jet, and no b-tagged jets in 2018 data.

$m_{\rm T2}(\ell\ell)$ bin	0-20	20-40	40-60	60-80	80-100	100-160	160-240	240-370	≥ 370
$ZZ (\rightarrow 2\ell 2\nu)$	0.05 ± 0.01	0.01 ± 0.00	0.01 ± 0.00	0.01 ± 0.00	0.01 ± 0.00	0.06 ± 0.01	0.03 ± 0.00	0.01 ± 0.00	0.00 ± 0.00
WW	103 ± 6	29.0 ± 2.5	30.9 ± 3.3	25.8 ± 2.0	7.9 ± 1.0	5.3 ± 0.7	2.8 ± 0.5	0.40 ± 0.27	0.00 ± 0.00
Drell-Yan	65.0 ± 54.0	2.6 ± 2.1	0.23 ± 0.45	0.03 ± 0.03	0.01 ± 0.01	0.06 ± 0.05	0.01 ± 0.02	0.00 ± 0.00	0.00 ± 0.00
EOY VZ ($\rightarrow 2\ell 2q$)	1.1 ± 0.1	0.07 ± 0.05	0.01 ± 0.02	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
tīZ	0.73 ± 0.09	0.24 ± 0.03	0.20 ± 0.02	0.21 ± 0.02	0.11 ± 0.02	0.26 ± 0.03	0.11 ± 0.01	0.01 ± 0.01	0.00 ± 0.00
VVV	4.0 ± 2.0	1.1 ± 0.6	1.2 ± 0.6	1.0 ± 0.5	0.31 ± 0.21	0.31 ± 0.19	0.14 ± 0.07	0.01 ± 0.03	0.00 ± 0.00
EOY H \rightarrow WW/ $\tau\tau$	0.98 ± 0.13	0.41 ± 0.04	0.30 ± 0.07	0.07 ± 0.01	0.00 ± 0.01	0.00 ± 0.00	0.04 ± 0.01	0.01 ± 0.02	0.00 ± 0.00
tīW	1.4 ± 0.6	0.37 ± 0.17	0.29 ± 0.13	0.29 ± 0.13	0.08 ± 0.10	0.12 ± 0.06	0.06 ± 0.03	0.01 ± 0.01	0.00 ± 0.00
WZ $(\rightarrow 3\ell\nu)$	4.9 ± 0.5	2.0 ± 0.5	1.2 ± 0.3	1.0 ± 0.3	0.26 ± 0.18	0.15 ± 0.13	0.09 ± 0.08	0.00 ± 0.01	0.00 ± 0.00
tī	218 ± 43	72.6 ± 10.5	84.4 ± 12.5	70.0 ± 8.0	25.0 ± 5.0	5.3 ± 1.3	0.37 ± 0.17	0.04 ± 0.11	0.00 ± 0.00
$H \rightarrow WW/\tau\tau$	4.2 ± 2.5	1.1 ± 0.6	0.68 ± 0.44	0.06 ± 0.05	0.00 ± 0.01	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
tW	38.7 ± 6.7	11.3 ± 1.8	13.4 ± 2.0	10.4 ± 1.5	3.2 ± 0.7	0.64 ± 0.17	0.04 ± 0.03	0.00 ± 0.00	0.00 ± 0.00
EOY WW	0.85 ± 0.11	0.31 ± 0.05	0.63 ± 0.15	0.55 ± 0.14	0.12 ± 0.04	0.11 ± 0.05	0.05 ± 0.01	0.03 ± 0.03	0.00 ± 0.00
EOY VVV	1.2 ± 0.3	0.45 ± 0.21	0.24 ± 0.17	0.13 ± 0.07	0.09 ± 0.04	0.09 ± 0.04	0.24 ± 0.13	0.00 ± 0.00	0.00 ± 0.00
SM Processes	446 ± 96	122 ± 15	134 ± 17	110 ± 11	37.2 ± 6.1	12.5 ± 2.0	4.0 ± 0.6	0.51 ± 0.32	0.00 ± 0.00
SM Processes (EOY)	433 ± 78	111 ± 15	130 ± 14	112 ± 14	37.4 ± 7.8	12.5 ± 2.6	4.4 ± 0.5	0.83 ± 0.39	0.00 ± 0.24
$m_{\tilde{\chi}_{1}^{\pm}} = 300, m_{\tilde{\chi}_{1}^{0}} = 1$	3.4 ± 0.9	2.5 ± 1.4	3.6 ± 1.0	2.7 ± 1.6	2.5 ± 2.2	25.7 ± 6.1	37.4 ± 6.5	2.0 ± 1.6	0.00 ± 0.00
$m_{\tilde{\chi}_1^{\pm}} = 500, m_{\tilde{\chi}_1^{0}} = 50$	1.8 ± 0.3	0.16 ± 0.12	0.29 ± 0.14	$\textbf{0.48} \pm \textbf{0.35}$	0.69 ± 0.14	3.4 ± 0.5	9.6 ± 1.1	4.4 ± 0.8	0.00 ± 0.00
$m_{\tilde{\chi}_1^{\pm}} = 400, m_{\tilde{\chi}_1^{0}} = 225$	3.5 ± 0.8	0.58 ± 0.26	1.8 ± 0.5	0.89 ± 0.86	1.8 ± 0.5	6.7 ± 1.6	1.8 ± 0.8	0.00 ± 0.00	0.00 ± 0.00
$m_{\tilde{\chi}_1^{\pm}} = 300, m_{\tilde{\chi}_1^{0}} = 175$	11.1 ± 4.4	2.6 ± 2.1	$\textbf{2.1} \pm \textbf{1.3}$	2.6 ± 2.5	$\textbf{2.1} \pm \textbf{2.1}$	4.5 ± 3.0	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
$m_{\tilde{\chi}_1^{\pm}} = 650, m_{\tilde{\chi}_1^0} = 350$	0.36 ± 0.03	0.12 ± 0.06	0.11 ± 0.06	0.09 ± 0.07	0.26 ± 0.08	1.0 ± 0.3	3.0 ± 0.5	0.45 ± 0.13	0.00 ± 0.00