

Search for heavy neutral scalars in top final states with the ATLAS detector Quake Qin (IFAE) on behalf of the ATLAS Collaboration

Introduction

- Solution to many issues not addressed by the SM involves an extended Higgs sector
- Two-Higgs-Doublet-Models (2HDMs): required by many BSM theories
 - an additional Higgs doublet

$$\Phi_a = \begin{pmatrix} \phi_a^+ \\ \frac{v_a + \rho_a + i\eta_a}{\sqrt{2}} \end{pmatrix}, \qquad a = 1, 2$$

- parameters: masses of the additional particles, $\tan \beta = v_2/v_1$, α (mixing angle between h and H)
 - alignment limit: $\sin(\beta \alpha) \sim 1$, where the properties of h aligns with the measured Higgs
- Additional scalars preferably couple to top quarks once beyond the $t\bar{t}$ mass threshold

Introduction

- Accessing small processes ~10 fb
- Two recent results:
 - $A/H \rightarrow t\bar{t}$: <u>arXiv:2404.18986</u>
 - $t\bar{t}H/A \rightarrow t\bar{t}t\bar{t}$: <u>ATLAS-CONF-2024-002</u>

Status: November 2023

Top Quark Production Cross Section Measurements

Why different channels?

- Completeness
- Different phenomenology
 - $A/H \rightarrow t\bar{t}$:

strong interference with SM $t\bar{t}$ leading to lead-dip like signal shape

• $t\bar{t}H/A \rightarrow t\bar{t}t\bar{t}$:

tree level production - less susceptible to interference effect (%-level)

• Massive $t\bar{t}t\bar{t}$ final state reduces the background

4

- Signal+interference modelled using MadGraph at LO + NLO k-factor
 - strong dependence on model parameters
- Using events with 1 or exactly 2 opposite-sign e/μ
- 1L channel: reconstruct $m_{t\bar{t}}$
 - resolved: χ^2 reconstruction
 - merged: large variable R jets (R_{max} =1.5) optimised for intermediate top boosts ($m_{t\bar{t}} \sim 1$ TeV)
- 2L channel: use m_{llbb} as proxy for the $m_{t\bar{t}}$

- Proper statistical treatment of the interference term $\mu \cdot S + \sqrt{\mu} \cdot I + B = (\mu - \sqrt{\mu}) \cdot S + \sqrt{\mu} \cdot (S + I) + B$
 - requires going beyond the common statistical approach to handle the issues due to the $\sqrt{\mu}$ term

- Two stages
 - The search stage: test the agreement between \bullet data and S+I+B hypotheses for different signals
 - The exclusion stage: Test (dis)agreement of da with specific interference pattern of tested signal hypothesis

$$q_0 = -2\ln \frac{\mathcal{L}(0, \hat{\hat{\theta}}_0)}{\mathcal{L}(\hat{\sqrt{\mu}}, \hat{\hat{\theta}}_{\hat{\sqrt{\mu}}})}$$

$$q_{1,0} = -2\ln \frac{\mathcal{L}(1, \hat{\hat{\theta}}_1)}{\mathcal{L}(0, \hat{\hat{\theta}}_0)}$$

- most significant deviation from SM-only (2.3 σ local): 800 GeV, width of 10%, fitted $\sqrt{\mu}=4.0$
 - driven by the narrow upward fluctuation at 800 GeV in the merged region

Search stage: tested a range of S+I+B hypotheses with masses [400, 1400] GeV and width of [1, 40]%

- Exclusion: strongest mass limit at low $tan \beta$ to date
- significantly improved tan β exclusion at low mass compared to the <u>previous results</u> at 8 TeV

- Challenging final states with high object-multiplicity
- Analyses performed in different leptonic final states
 - Previous result in 2LSS+ML (most sensitive), 139 fb⁻¹ @ 13 TeV
- 1L+2LOS channel

 - low sensitivity compared to 2LSS/ML but complementary

1L channel

large branching fraction but also large background from $t\bar{t}$ +jets, especially heavy flavour (HF) jets

2LOS channel

10

- Classify the dominant $t\overline{t}$ +jets into $t\overline{t}$ +>1b, $t\overline{t}$ +>1c and $t\overline{t}$ +light
 - using particle level jets matched to b/c hadrons
 - $t\bar{t}$ +>1b: $t\bar{t}$ +b/B/bb/>3b
 - according number of jets matched to b-hadrons
 - b vs. B: a single vs. a pair of b-hadrons matched to a particle-level jet
- different background compositions using flavour tagging information

3bL = Light-flavour enriched3bH = Heavy-flavour enriched3bV = Validation region

Name	$N_{b}^{60\%}$	$N_{b}^{70\%}$	$N_{b}^{85\%}$
2b	-	= 2	-
3bL	≤ 2	= 3	-
3bH	= 3	= 3	> 3
3bV	= 3	= 3	= 3
\geq 4b (2LOS)	-	≥ 4	-
4b (1L)	-	= 4	-
≥5b (1L)	-	≥ 5	-

11

- Data-driven corrections on $t\bar{t}$ +jets background
 - Flavour rescaling: fit to data in different b-tag regions to extract normalisation correction factors on $t\bar{t} + \ge 1b$, $t\bar{t} + \ge 1c$ and $t\bar{t} + \text{light}$
 - Kinematic reweighting based on a neural network (NN) trained lacksquareas a binary classifier of data vs. $t\bar{t}$ simulation

- Graph neural network (GNN) to optimise the signal-background discrimination
- $m_{H/A}$ parametrisation: smooth interpolation between mass points
- A list of higher-level variable (sum of jet b-tag scores, H_T , ...) included as global features

 introduced to for validation purposes 	<u>15</u> ع	
 also helps the training converge faster 		
and less prone to training statistics	25	
Most important information from	20	
 b-tagging 	15	
 node pT 	10	
	5	
	ed.	

Data / P

- Combined with the previous analysis using 2LSS+ML channels to achieve optimal sensitivity
 - 2LSS+ML drives the sensitivity •
 - 1L+2LOS introduces a larger improvement at high masses \bullet
- Sensitivity in 1L+2LOS channels dominated by $t\bar{t}+\geq 1b$ and $t\bar{t}t\bar{t}$ modelling

Uncertainty source		$\Delta \sigma_{t\bar{t}H/A \to t\bar{t}t\bar{t}}$ [fb]				
	$m_{H/A}$	4=400 GeV	m_{H/A^2}	=700 GeV	$m_{H/A}$	=1000 (
Signal Modelling						
BSM tītī modelling		< 1	+0.1	< 0.1		< 0.1
Background Modelling						
$t\bar{t}+\geq 1b$ modelling	+11	-10	+3.7	-3.4	+1.9	-1.7
SM tītī modelling	+3	-3	+2.1	-2.1	+0.9	-0.9
$t\bar{t}$ +jets reweighting	+3	-3	+1.0	-1.0	+0.5	-0.5
$t\bar{t}+\geq 1c$ modelling	+2	-2	+0.9	-0.8	+0.4	-0.4
<i>tī</i> +light modelling	+1	-1	+0.2	-0.2		< 0.1
Other background modelling		< 1	+0.4	-0.4	+0.2	-0.2
Experimental						
Jet energy scale and resolution		-2	+1.3	-0.8	+0.5	-0.3
MC statistical uncertainties		-3	+0.6	-0.7	+0.4	-0.4
<i>b</i> -tagging efficiency and high- p_{T} extrapolation	+2	-1	+0.7	-0.4	+0.4	-0.4
Other uncertainties		< 1	+0.3	-0.5	+0.1	-0.2
Luminosity		< 1	+0.3	-0.1		< 0.1
Total systematic uncertainty	+13	-12	+4.8	-4.6	+2.5	-2.4
Statistical uncertainty		-6	+3.3	-3.2	+2.3	-2.2
Total uncertainty	+14	-13	+5.6	-5.4	+3.2	-3.0

tt **VS.** tttt

- Much better $\tan\beta$ exclusion from $A/H \rightarrow t\bar{t}$ at lower masses
 - sensitivity at low tan β driven by the off-shell signal "peak" ullet
- higher masses $t\bar{t}H/A$ becomes competitive

15

Summary

- Presented two recent results from ATLAS on the search for new heavy neutral scalars in top final states
- Search for $A/H \to t\bar{t}$
 - strongest mass exclusion to date on 2HDM/hMSSM at low $\tan\beta$ ullet
- Search for $t\bar{t}H/A \rightarrow t\bar{t}t\bar{t}$ 1L+2LOS
 - first dedicated search in this final states \bullet
 - in combination with 2LSS+ML, competitive sensitivity at high masses \bullet
 - further extending the search range could lead to promising results
- Stayed tuned for Run3!

BACKUP

State of the art

Results - SM *tttt* cross section

Measured cross section:

Agree ment with predictions < 20

Variable	Description
$\sum_{i \in [1,6]} \text{pcb}_i$	Sum of the pcb scores of the six
H_{T}	$p_{\rm T}$ sum of all reconstructed lepto
N _{jets}	Jet multiplicities
$H_{\mathrm{T}}^{\mathrm{ratio}}$	$p_{\rm T}$ sum of the four leading jets in
$dR_{ii}^{\text{avg.}}$	Average ΔR across all jet pairs
$m_{\mathrm{T}}^{\check{W}}$	W-boson transverse mass calcula
ΔR_{bb}^{\min}	Minimum ΔR between any pair of
$\Delta R_{\ell b}^{\min}$	Minimum ΔR between any pair of
$m_{bbb}^{avg.}$	Average invariant mass of all trip
$m_{jj}^{\text{avg.}}$	Average invariant mass of all jet-
$\sum d_{12}$	Sum of the first k_t splitting scale
$\sum d_{23}$	Sum of the second k_t splitting sc
N _{LR-jets}	Number of large-R jets with a ma
Centrality	$\sum_i p_{\rm T}^i / \sum_i E_i$ where the sums are
$m_{\ell\ell}$	Invariant mass of the two leptons

jets with the highest scores ons and jets

n $p_{\rm T}$ divided by the $p_{\rm T}$ sum of the remaining jets

ated using the lepton four-momenta and $E_{\rm T}^{\rm miss}$ (1L only) of jets *b*-tagged at the 70% OP

of lepton and jet b-tagged at the 70% OP

plets of jets b-tagged at the 70% OP

-triplets with an angular separation of $\Delta R < 3$

e d_{12} over all large-R jets

cale d_{12} over all large-R jets

ass greater than 100 GeV

e performed over all reconstructed jets and leptons s (2LOS only)

$$O(\mathbf{x}) = P(\text{data}|\mathbf{x}) = \frac{\alpha_{\text{data}}P_{\text{data}}(\mathbf{x})}{\alpha_{\text{data}}P_{\text{data}}(\mathbf{x}) + \alpha_{\text{sim}}P_{\text{sim}}(\mathbf{x})},$$

Exponential loss function to help with the training in low-stat regime •

$$\mathcal{L} = P_{\text{data}} e^{-\frac{O(\mathbf{x})}{2}} + P_{\text{sim}} e^{\frac{O(\mathbf{x})}{2}}.$$

- after minimisation $\mathscr{L} = 0$
- resulting event weight •

$$w(\mathbf{x}) = e^{O(\mathbf{x})}.$$

$$w(\mathbf{x}) = \frac{\alpha_{\text{data}} P_{\text{data}}(\mathbf{x})}{\alpha_{\text{sim}} P_{\text{sim}}(\mathbf{x})} = \frac{O(\mathbf{x})}{1 - O(\mathbf{x})}.$$

Search for heavy resonances - *H*/*A* JHEP 07 (2023) 203

- Same strategy as the SM $t\bar{t}t\bar{t}$ measurement
- additional MVA to separate BSM vs SM *tttt*
 - $m_{H/A}$ -parametrised BDT allows smooth interpolation between mass points

Search for heavy resonances - H/AJHEP 07 (2023) 203 tanβ ---- Observed Consider 2HDM signal in the alignment limit $\sin(\beta - \alpha) \sim 1$ ATLAS ---- Observed $\pm 1\sigma_{theory}$ $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ 2.5 **BSM 4tops SSML** — – Expected 400 - 1000 GeV, with 100 GeV steps ulletExpected ± $1\sigma_{experiment}$ 2 Scalar+pseudo-scalar mass width set to 5 - 30 GeV, consistent with $\tan\beta = 1$ 95% CL upper limit on xsec x BR ~10 fb SM $t\bar{t}t\bar{t}$ normalised to 12 fb, with 20% uncertainty on xsec, plus other 0.5 modelling uncertainties 0.6 0.9 0.4 0.5 0.7 0.8 $m_{A} = m_{H} [TeV]$ З $\sigma(pp \rightarrow t\bar{t}H/A) \times B(H/A \rightarrow t\bar{t})$ [pb] tanβ Observed limit ATLAS Observed ATLAS $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ ---- Observed $\pm 1\sigma_{theory}$ •••••• Expected limit $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ 2.5 **BSM 4tops SSML BSM 4tops SSML** - - Expected ± 1σ Expected $\pm 1\sigma_{experiment}$ $\pm 2\sigma$ 2 Theory: Scalar $tan\beta=0.5$ 10 - tan β =1.0 1.5 0.5 0.9 0.5 0.6 0.7 0.8 0.4 0.9 m_{H/A} [TeV]

