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Theoretical framework
Goals

Why searching for radiative neutralino decays at the LHC?
SUSY provides an explanation for the scale of EWSB (soft SUSY breaking
scale) and DM (with the LSP χ̃0

1 in the presence of R-parity).
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Strong constraints at LHC for colored supersymmetric partners.
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Weakly interacting particles, instead, may be light and can be probed at the
HL-LHC, and are also motivated by pg ´ 2q within the MSSM.

In this scenario, the proper cosmological relic density can be achieved in the
co-annihilation/compressed region, where the mass of the LSP in close to
other weakly interacting particles, like for example, the second lightest
neutralino χ̃0

2 and the lightest charginos χ̃˘
1 (mχ̃0

1
„ mχ̃0

2
„ m

χ̃˘
1

).
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Theoretical framework
Goals

If the direct detection cross-section of DM (LSP) is suppressed within the
compressed parameter space, the second lightest neutralino tends to decay
into the LSP and a photon.
Radiative decaying neutralinos at the LHC are highly suppressed by
backgrounds (yet unexplored).
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Proposal

Search for radiative decaying neutralinos
?

s = 14 TeV and a total integrated
luminositiy of L “ 100 fb´1. We require a highly energetic ISR jet in association
with electroweakino pair χ̃˘

1 χ̃0
2 to increase the MET signature.

Baum et al, JHEP 11 (2023), 037
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First analysis with an optimized cut-based strategy.

Main analyses adding a ML binary classifier to exploit correlations and
increase the sensitivity of signal over background. Discovery significance is
reported for two different approaches:

Binned Likelihood (BL) method.
Machine-Learned Likelihoods (MLL) method (unbinned fit with Kernel
Density Estimators -KDE).

In all cases, we compare scenario-dependent analysis (for specific set of
parameters) vs. scenario-independent one (extensive to all parameter space).
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Signal

p p Ñ χ̃˘
1 χ̃0

2 j Ñ χ̃0
1 ℓ νℓ ` χ̃0

1 γ ` j

BPs representative of the compressed region. All BPs alleviate tension in
pg ´ 2q. Only BPs t2, 5, 8, 11, 14u produce the cosmological relic density. A
few BPs are naively excluded by CMS multilepton searches (the ones with
the lowest mχ̃0

2
).

Event selection criteria: at least one charged light lepton (ℓ “ e, µ), at least
one photon, and at least one jet. Leading jet with pT ą 100 GeV and
Emiss

T ą 100 GeV.
Sandá Seoane, R.M.
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Backgrounds

Process Yield BP # Yield S{
?

B
W ` jets 60058 1 202 0.58

W γ 58462 2 459 1.31
tt̄γ 2877 3 637 1.82

tt̄ ` jets 11k 4 111 0.31
Z ` jets 4.2k 5 235 0.67
Diboson 1.6k 6 334 0.95

Single t ` W 1.3k 7 66 0.18
Total background 121397 8 129 0.37

9 179 0.51
10 40 0.11
11 74 0.21
12 102 0.29
13 23 0.06
14 41 0.11
15 57 0.16

Only dominant backgrounds were used for the preliminary results presented
today (red ones will be included in work in progress).
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Kinematic variables

Simple set of variables to characterize the kinematics of the studied final state
including low-level detector variables (pT , η and ϕ of the leading objects
tj1, ℓ1, γ1u, Emiss

T , and object multiplicities), and several high-level observables:

H jets
T “

ÿ

pjets
T ,

HT “
ÿ

pjets
T `

ÿ

pτ
T `

ÿ

pe
T `

ÿ

pµ
T `

ÿ

pγ
T ,

mA
T ” mT

´

pT pAq, Emiss
T

¯

“

b

2pT pAqEmiss
T

`

1 ´ cos ∆ϕ
`

pT pAq, Emiss
T

˘˘

,

s1
T “ pℓ1

T ` pj1
T ` pγ1

T ,

Emiss
T {

a

HT .
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Most relevant variables for discrimination:
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Training of supervised XGBoost classifier, with balanced dataset, and all low
and high-level variables as input features.
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Results for BP 1. Although there are small changes in the hierarchy of the
feature importance training with a different BP or with the BP-independent
dataset, the general trend is not modified.
KDE for unbinned fit of the ML output within the MLL method, and
histogram-based analysis within the BL method.
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Correlation plot of the 4 most important features comparing the cut-and-count
and ML strategy:
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BP-dependent cuts are more stringent and leave only Op10q of expected
events than the BP-independent cuts.
The ML classifier captures better the underlying physics than the
signal-enriched regions described by rectangular cuts.
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Projected discovery significance in the [mχ̃0
2
, mχ̃0

2
´ mχ̃0

1
] plane with all methods

for the BP-dependent (left) and the BP-independent (right) approaches:
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The ML strategies (MLL and BL) are more sensitive than the cut-based one
(SCB). Unbinning signal and background posteriors (MLL) provide more
constraining limits than binning output (BL).
The ML strategies provide a BP-independent sensitivity similar to the
BP-dependent one, unlike the cut-based strategy.
Proof-of-concept results, not systematic uncertainties included! Also still
necessary to include other subdominant backgrounds.
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Conclusions

We explore an alternative channel for searching neutralinos, including
photons, never explored at the LHC. Well-motivated to explain pg ´ 2q.
(NEW!)
The channel dominates in the co-annihilation region of the MSSM, where
the direct DM detection cross-section is suppressed.
The significance of these searches for the HL-LHC may be greatly improved
using machine learning methods.
Projected significances are promising, although a complete study including
systematic uncertainties is still needed.
Results may be modified when including other subdominant backgrounds
(work in progress).
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Thank you!
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Traditional vs ML search of New Physics

Distinguish SM (bckg) vs BSM (signal) in collider data:

Design observables, define control regions... ÝÑ ML classifiers

For experimental significances, selection cuts ÝÑ Working points ✗
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Traditional vs ML search of New Physics

Distinguish SM (bckg) vs BSM (signal) in collider data:

Design observables, define control regions... ÝÑ ML classifiers

For experimental significances, selection cuts ÝÑ Working points ✗

Is it possible to connect the ML classifier output with the
standard statistical tests without defining working points?

ÝÑ Machine-Learned Likelihood (MLL) Method
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Traditional vs ML search of New Physics

Distinguish SM (bckg) vs BSM (signal) in collider data:

Design observables, define control regions... ÝÑ ML classifiers

For experimental significances, selection cuts ÝÑ Working points ✗

Is it possible to connect the ML classifier output with the
standard statistical tests without defining working points?

ÝÑ Machine-Learned Likelihood (MLL) Method

Can we avoid the information loss from binning the output?

ÝÑ +Kernel Density Estimators (KDE)

Sandá Seoane, R.M.
Machine-Learning Collider Analysis of Radiative Neutralino Decays at the LHC
15 / 15



Motivation
Collider Analysis

Conclusions

Method: Machine-Learned Likelihood

E. Arganda, X. Marcano, V.
Martín Lozano, A. D. Medina,

A. D. Perez, M. Szewc, A.
Szynkman

Eur. Phys. J. C 82, no.11, 993
(2022)

E. Arganda, M. de los Rios, A.
D. Perez, RMSS

PoS ICHEP2022 (2022) 1226

E. Arganda, M. de los Rios, A.
D. Perez, RMSS

arXiv: 2211.04806
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The MLL method
Statistical model for N independent measurements, with a high-dimensional set
of observables x

Lpµ, s, bq “ ppN, txi , i “ 1, ..., Nu|µ, s, bq ” Poiss
`

N|µS ` B
˘

N
ź

i“1
ppxi |µ, s, bq

where S (B) is the expected total signal (background) yield, and

ppx |µ, s, bq “
B

µS ` B pbpxq `
µS

µS ` B pspxq

The relevant test statistic to derive discovery significances corresponds to µ “ 0

q̃0 “

$

&

%

0 if µ̂ ă 0
´2 Ln Lp0,s,bq

Lpµ̂,s,bq
“ ´2µ̂S ` 2

řN
i“1 Ln

´

1 `
µ̂Sps pxi q
Bpbpxi q

¯

if µ̂ ě 0

where µ̂ is the parameter that maximizes the likelihood

N
ÿ

i“1

pspxi q
µ̂S pspxi q ` B pbpxi q

“ 1
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Solution: train classifier to distinguish signal from bckg with a balanced dataset.
The classification score maximizes the binary cross-entropy and thus approaches

opxq “
pspxq

pspxq ` pbpxq

Dimensional reduction by dealing with opxq instead of x
pspxq Ñ p̃spopxqq , and pbpxq Ñ p̃bpopxqq

Cranmer et al, arXiv: 1506.02169

0.0 0.2 0.4 0.6 0.8 1.0
Classication score (XGBoost)

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040

Fr
ac

tio
n 

of
 e

ve
nt

s

Background
Signal

where p̃s,bpopxqq are the distributions of opxq for signal and background,
obtained by evaluating the classifier on a set of pure signal or background events,
respectively.
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The relevant test statistic for exclusion limits

q̃0 “

$

&

%

0 if µ̂ ă 0
´2 Ln Lp0,s,bq

Lpµ̂,s,bq
“ ´2µ̂S ` 2

řN
i“1 Ln

´

1 `
µ̂Sps pxi q
Bpbpxi q

¯

if µ̂ ě 0

with µ̂ such us

N
ÿ

i“1

p̃spopxi qq

µ̂S p̃spopxi qq ` B p̃bpopxi qq
“ 1

The median expected discovery significance when the true hypothesis is assumed
to be the signal-plus-background (µ1

“ 1) is

med rZ0|1s “
a

med rq̃0|1s
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Summary of MLL

MLL method allows to obtaining exclusion (and discovery) significances for
additive new physics scenarios.

Uses a single XGBoost classifier and its full 1D output (no working points),
which allows the estimation of the S and B pdfs needed for statistical
inference. Not strictly necessary to bin the output to extract the PDFs.

Inclusion of KDE as an extension of the MLL method to avoid the binning
of the ML classifier output.

Improves results obtained by traditional techniques in toy models and
realistic analysis, approaching (when possible) the ones computed with true
generative functions.

Possible improvements: unsupervised analysis, systematic uncertainties...
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Traditional Binned-Likelihood (BL) method

ps,bpxq{p̃s,bpopxi qq are not known and are approximated by discrete binned
distributions

Lpµ, s, bq “

D
ź

d“1
Poiss

`

Nd |µSd ` Bd
˘

The median exclusion significance using Asimov datasets is given by

medrZµ|0s “

b

q̃µ|0 “

«

2
D
ÿ

d“1

ˆ

Bd ln
ˆ

Bd
Sd ` Bd

˙

` Sd

˙

ff1{2

ÝÝÝÝÑ
S!B?
B"1

S
?

B

J HEP 10 (2018) 117 arXiv: 2207.00338
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Density Estimation

What is the best way to extract p̃spopxqq and p̃bpopxqq?
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Density Estimation

ÝÑDensity estimation in a sense is the reverse of sampling: from given samples
we want to retrieve the density function from which the samples were generated.

ÝÑTwo types of methods for density estimation

Parametric: model the density function as a specified functional form with a
fixed number of tunable parameters.
Non-parametric: specify a model whose complexity grows with the number
of training datapoints.
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Kernel Density Estimators

Kernel Density Estimators (KDE) is a non-parametric method for extracting
p̃spopxi qq and p̃bpopxi qq

ÝÑSmoothed version of the empirical distribution qopxq of the training data
txi , i “ 1, ..., Nu

qopxq “
1
N

N
ÿ

i
δ px ´ xi q

ÝÑWe can smooth out the empirical distribution and turn it into a density by
replacing each delta distribution with a smoothing kernel

κϵpuq “
1

ϵD κ1
´ u

ϵ

¯

where ϵ ą 0 (bandwidth parameter) controls the width of the kernel and κ1puq is
a density function bounded from above (as ϵ Ñ 0, κϵpuq approaches δpuq)

qϵpxq “
1
N

N
ÿ

i
κϵ px ´ xi q
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p̃s,bpopxqq “
1
N

N
ÿ

i
κϵ ropxq ´ opxi qs

Several options for κϵ, e.g.

κϵpuq “

$

&

%

1
ϵ

3
4

´

1 ´ pu{ϵq
2
¯

, if |u| ď ϵ

0 otherwise
Epanechnikov kernel
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