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Motivation a
Theoretical framework

Goals

Why searching for radiative neutralino decays at the LHC?

@ SUSY provides an explanation for the scale of EWSB (soft SUSY breaking
scale) and DM (with the LSP )2(1) in the presence of R-parity).
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Motivation

Theoretical framework

Goals

@ Strong constraints at LHC for colored supersymmetric partners.
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Theoretical framework

Goals

o Weakly interacting particles, instead, may be light and can be probed at the
HL-LHC, and are also motivated by (g — 2) within the MSSM.

CMS 137 (129) fb" (13 TeV)
o UL > WAL, en Expected
——— 2/3I soft
—— 28SI/23|
Combined
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@ In this scenario, the proper cosmological relic density can be achieved in the
co-annihilation/compressed region, where the mass of the LSP in close to
other weakly interacting particles, like for example, the second lightest
neutralino )”(g and the lightest charginos Xf(mio ~ mgo ~ m_+).
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Motivation a
Theoretical framework

Goals

o If the direct detection cross-section of DM (LSP) is suppressed within the
compressed parameter space, the second lightest neutralino tends to decay
into the LSP and a photon.

o Radiative decaying neutralinos at the LHC are highly suppressed by
backgrounds (yet unexplored).
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Theoretical framework
Goals

Proposal

Search for radiative decaying neutralinos /s = 14 TeV and a total integrated
luminositiy of £ = 100 fb~1. We require a highly energetic ISR jet in association
with electroweakino pair )Zli )Zg to increase the MET signature.

Baum et al, JHEP 11 (2023), 037
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Motivation

o First analysis with an optimized cut-based strategy.

@ Main analyses adding a ML binary classifier to exploit correlations and
increase the sensitivity of signal over background. Discovery significance is

reported for two different approaches:
o Binned Likelihood (BL) method.

o Machine-Learned Likelihoods (MLL) method (unbinned fit with Kernel
Density Estimators -KDE).
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In all cases, we compare scenario-dependent analysis (for specific set of
parameters) vs. scenario-independent one (extensive to all parameter space).
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Event characterization
Collider Analysis Why ML tools?
Results

~+ ~0 . ~0 ~0 .
pp— X1 XoJ = Xilve+ X1y +J

BP # || mg [GeV] | (myg — mye) [GeV] | Br(3§ = X8 +) | oo > xEX0)

1 200 34 15% 190 fb
2 200 19 3% 190 fb
3 200 10 73% 190 fb
1 250 37 15% 92 fb
5 250 22 36% 92 fb
6 250 13 67% 92 fb
7 300 39 16% 48 fb
8 300 24 36% 48 fb
9 300 15 62% 48 fb
10 350 11 17% 27 fh
11 350 26 35% 27
12 350 17 58% 27 b
13 400 43 16% 16 fb
14 100 27 32% 16 fb
15 400 18 52% 16 fb

@ BPs representative of the compressed region. All BPs alleviate tension in
(g —2). Only BPs {2,5,8,11, 14} produce the cosmological relic density. A
few BPs are naively excluded by CMS multilepton searches (the ones with
the lowest mxg).

o Event selection criteria: at least one charged light lepton (£ = e, u), at least
one photon, and at least one jet. Leading jet with p7 > 100 GeV and
ET™ > 100 GeV.
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Event characterization
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Backgrounds
Process Yield BP # | Yield | S/VB
W + jets 60058 1 202 | 058
Wy 58462 2 459 | 1.31
tEy 2877 3 637 | 1.82
tF + jets 11k 4 111 | 031
Z + jets 4.2k 5 235 | 0.67
Diboson 1.6k 6 334 0.95
Single t + W 1.3k 7 66 0.18
Total background | 121397 8 129 0.37
9 179 | 051
10 40 0.11
11 74 | 021
12 102 | 0.29
13 23 0.06
14 41 0.11
15 57 0.16

Only dominant backgrounds were used for the preliminary results presented
today (red ones will be included in work in progress).
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Event characterization
Collider Analysis Why ML tools?
Results

Kinematic variables

Simple set of variables to characterize the kinematics of the studied final state
including low-level detector variables (pr, 7 and ¢ of the leading objects
{1, 41,71}, EFS, and object multiplicities), and several high-level observables:

Hjets _ Z piets
T - 1
Hr = Y PF + 2 pT + 21T + 2, P + 2.pT
my = mr (pr(A), EF*) = V2P (AP (1 — cos Ad (pr(A), ET)),
St =P+ P+ e

£/ H
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Event characterization
Collider Analysis Why ML tools?

Results

Most relevant variables for discrimination:
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Event charact
Collider Analysis Why ML tools?

Results

@ Training of supervised XGBoost classifier, with balanced dataset, and all low
and high-level variables as input features.
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@ Results for BP 1. Although there are small changes in the hierarchy of the
feature importance training with a different BP or with the BP-independent
dataset, the general trend is not modified.

@ KDE for unbinned fit of the ML output within the MLL method, and
histogram-based analysis within the BL method.
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Collider Analysis Why ML tools?

Results

Correlation plot of the 4 most important features comparing the cut-and-count

and ML strategy: 7 o

2 e of 05 o8 10

Background
o Signal

— BPInd.
—- BP1

@ BP-dependent cuts are more stringent and leave only O(10) of expected
events than the BP-independent cuts.

@ The ML classifier captures better the underlying physics than the
signal-enriched regions described by rectangular cuts.
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Collider Analysis

Results

Projected discovery significance in the [m)zo, myo — m)zo] plane with all methods
2 2 1

for the BP-dependent (left) and the BP-independent (right) approaches:
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@ The ML strategies (MLL and BL) are more sensitive than the cut-based one
(SCB). Unbinning signal and background posteriors (MLL) provide more
constraining limits than binning output (BL).

@ The ML strategies provide a BP-independent sensitivity similar to the
BP-dependent one, unlike the cut-based strategy.

@ Proof-of-concept results, not systematic uncertainties included! Also still
necessary to include other subdominant backgrounds.
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Conclusions

Conclusions

We explore an alternative channel for searching neutralinos, including
photons, never explored at the LHC. Well-motivated to explain (g — 2).
(NEW!)

@ The channel dominates in the co-annihilation region of the MSSM, where
the direct DM detection cross-section is suppressed.

@ The significance of these searches for the HL-LHC may be greatly improved
using machine learning methods.

@ Projected significances are promising, although a complete study including
systematic uncertainties is still needed.

@ Results may be modified when including other subdominant backgrounds
(work in progress).
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Conclusions

Traditional vs ML search of New Physics

Distinguish SM (bckg) vs BSM (signal) in collider data:

@ Design observables, define control regions... —> ML classifiers v~

@ For experimental significances, selection cuts — Working points X
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Conclusions

Traditional vs ML search of New Physics

Distinguish SM (bckg) vs BSM (signal) in collider data:

@ Design observables, define control regions... —> ML classifiers v~

o For experimental significances, selection cuts — Working points X

Is it possible to connect the ML classifier output with the
standard statistical tests without defining working points?

— Machine-Learned Likelihood (MLL) Method
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Conclusions

Traditional vs ML search of New Physics

Distinguish SM (bckg) vs BSM (signal) in collider data:

o Design observables, define control regions... —> ML classifiers v~

o For experimental significances, selection cuts — Working points X

Is it possible to connect the ML classifier output with the
standard statistical tests without defining working points?

— Machine-Learned Likelihood (MLL) Method

Can we avoid the information loss from binning the output?

— +Kernel Density Estimators (KDE)
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Conclusions

Method: Machine-Learned

E. Arganda, X. Marcano, V.
Martin Lozano, A. D. Medina,
A. D. Perez, M. Szewc, A.

E. Arganda, M. de los Rios, A.
D. Perez, RMSS

PoS ICHEP2022 (2022) 1226
Szynkman
Eur. Phys. J. C 82, no.11, 993
(2022) PROCEEDINGS
OF SCIENCE

Imposing exclusion limits on new physics with
machine-learned likelihoods

Martin de os Rios,* Andres D. Perez" and Rosa Maria

Likelihood

E. Arganda, M. de los Rios, A.
D. Perez, RMSS

arXiv: 2211.04806

Machine-Learned Exclusion Limits without Binning

Ernesto Arganda
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Conclusions

The MLL method

Statistical model for N independent measurements, with a high-dimensional set
of observables x

N

L(p,s,b) = p(N, {xj,i = 1,..., N}|u, s, b) = Poiss(N|uS + B) [ [ p(xilu. s, b)
i=1

where S (B) is the expected total signal (background) yield, and

B uS
(s,b) = =
The relevant test statistic to derive discovery significances corresponds to ;1 =0
_ 0 ifa<o
qo = L£O0sb) _ 5 N £15ps (%) I
_2an——2us+22i=1 Ln (1+m) if o >0
where [i is the parameter that maximizes the likelihood
N
Z Ps(X:) -1
=4 1S ps(xi) + B py(xi)
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Conclusions

The MLL method

Statistical model for N independent measurements, with a high-dimensional set
of observables x

N
L(p,s,b) = p(N, {xj,i = 1,..., N}|u, s, b) = Poiss(N|uS + B) [ [ p(xilu. s, b)
i=1

where S (B) is the expected total signal (background) yield, and

)

B
STEP0 —HS"+ = pe(x)

p(x|p. s, b) =
The relevant test statistic to derive discovery significances corresponds to ;1 =0

_ 0 ifa<o
o = LOsb) _ _op N £Sps(x) if 0
_2an——2;¢5+22i=1 Ln (1+W) ifg=>0
where [i is the parameter that maximizes the likelihood
N

ps(xi) _
,.:Zl S ps(xi) + Bpp(xi) !
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Conclusions

Solution: train classifier to distinguish signal from bckg with a balanced dataset.
The classification score maximizes the binary cross-entropy and thus approaches

O(X _ pS(X)
ps(x) + pb(x)
Dimensional reduction by dealing with o(x) instead of x
ps(x) > Ps(o(x)),  and  py(x) = Pu(o(x))
Cranmer et al, arXiv: 1506.02169
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where ps p(0(x)) are the distributions of o(x) for signal and background,
obtained by evaluating the classifier on a set of pure signal or background events,
respectively.
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Conclusions

The relevant test statistic for exclusion limits

5 0 if i <0
q0 = L£(0,5,b) N N ASps(x) oA
—2Ln Theb) = —2p5+2%; 4 Ln (1 + Bpn () ) ifp=0

with [ such us

u (o(x)
§ S bsl x,>+BfJ<<x,>>

The median expected discovery significance when the true hypothesis is assumed
to be the signal-plus-background (u' = 1) is

med [Zo|1] = +/med [gol1]
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Conclusions

Summary of MLL

@ MLL method allows to obtaining exclusion (and discovery) significances for
additive new physics scenarios.

@ Uses a single XGBoost classifier and its full 1D output (no working points),
which allows the estimation of the S and B pdfs needed for statistical
inference. Not strictly necessary to bin the output to extract the PDFs.

@ Inclusion of KDE as an extension of the MLL method to avoid the binning
of the ML classifier output.

@ Improves results obtained by traditional techniques in toy models and
realistic analysis, approaching (when possible) the ones computed with true
generative functions.

@ Possible improvements: unsupervised analysis, systematic uncertainties...
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Conclusions

Traditional Binned-Likelihood (BL) method

Ps,b(x)/Ps.p(0(xi)) are not known and are approximated by discrete binned
distributions D

L(i, s, b) = H Poiss(Ng|1Sq + Bq)
d=1

The median exclusion significance using Asimov datasets is given by

D B 1/2 s
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J HEP 10 (2018) 117 arXiv: 2207.00338
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Conclusions

Density Estimation

What is the best way to extract ps(o(x)) and pp(o(x))?
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Conclusions

Density Estimation

——Density estimation in a sense is the reverse of sampling: from given samples
we want to retrieve the density function from which the samples were generated.

—>Two types of methods for density estimation

@ Parametric: model the density function as a specified functional form with a
fixed number of tunable parameters.

o Non-parametric: specify a model whose complexity grows with the number
of training datapoints.
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Conclusions

Kernel Density Estimators

Kernel Density Estimators (KDE) is a non-parametric method for extracting
ps(o(xi)) and Bp(o(xi))

—Smoothed version of the empirical distribution go(x) of the training data
{X,',i = 1, ceny N}

1 N
Golx) = 3 238 (x=x)

—>We can smooth out the empirical distribution and turn it into a density by
replacing each delta distribution with a smoothing kernel

Ke(u) = eiD K1 (g)

where € > 0 (bandwidth parameter) controls the width of the kernel and 1 (u) is
a density function bounded from above (as € — 0, k¢(u) approaches §(u))

1 N
ZOESOIACER)
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Conclusions

Ps,p(0(x)) = 5 2 e [0(x) — o(xi)]

Several options for ke, e.g.
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