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data exist (0.01 . x . 0.3) should be taken with due care. At variance with previous studies, in the denominator of
the asymmetries in Eqs. (4) and (12) we are using unpolarized TMDs that were extracted from data in our previous
Pavia17 fit, with their own uncertainties. Therefore, our uncertainty bands in Fig. 1 represent a realistic estimate of
the statistical error of the Sivers function.
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Figure 2: The density distribution ⇢a
p"

of an unpolarized quark with flavor a in a proton polarized along the +y direction and moving towards the

reader, as a function of (kx, ky) at Q2 = 4 GeV2. Left panels for the up quark, right panels for the down quark. Upper panels for results at x = 0.1,
lower panels at x = 0.01. For each panel, lower ancillary plots represent the 68% uncertainty band of the distribution at ky = 0 (where the e↵ect
of the distortion due to the Sivers function is maximal) while left ancillary plots at kx = 0 (where the distribution is the same as for an unpolarized
proton). Results in the contour plots and the solid lines in the projections correspond to replica 105 (see text).

In Fig. 2, we show the density distribution ⇢a
p" of an unpolarized quark a in a transversely polarized proton defined

in Eq. (1), at x = 0.1 (upper panels) and x = 0.01 (lower panels) and at the scale Q2 = 4 GeV2. The proton is moving
towards the reader and is polarized along the +y direction. Since the up Sivers function is negative, the induced
distortion is positive along the +x direction for the up quark (left panels), and opposite for the down quark (right
panels).

At x = 0.1 the distortion due to the Sivers e↵ect is evident, since we are close to the maximum value of the
function shown in Fig. 1. The distortion is more pronounced for down quarks, because the Sivers function is larger
and at the same time the unpolarized TMD is smaller. The peak positions are approximately (kx)max ⇡ 0.1 GeV for
up quarks and �0.15 GeV for down quarks. At lower values of x, the distortion disappears. These plots suggest that
a virtual photon hitting a transversely polarized proton e↵ectively “sees” more up quarks to its right and more down
quarks to its left in momentum space.
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data exist (0.01 . x . 0.3) should be taken with due care. At variance with previous studies, in the denominator of
the asymmetries in Eqs. (4) and (12) we are using unpolarized TMDs that were extracted from data in our previous
Pavia17 fit, with their own uncertainties. Therefore, our uncertainty bands in Fig. 1 represent a realistic estimate of
the statistical error of the Sivers function.
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Figure 2: The density distribution ⇢a
p"

of an unpolarized quark with flavor a in a proton polarized along the +y direction and moving towards the

reader, as a function of (kx, ky) at Q2 = 4 GeV2. Left panels for the up quark, right panels for the down quark. Upper panels for results at x = 0.1,
lower panels at x = 0.01. For each panel, lower ancillary plots represent the 68% uncertainty band of the distribution at ky = 0 (where the e↵ect
of the distortion due to the Sivers function is maximal) while left ancillary plots at kx = 0 (where the distribution is the same as for an unpolarized
proton). Results in the contour plots and the solid lines in the projections correspond to replica 105 (see text).

In Fig. 2, we show the density distribution ⇢a
p" of an unpolarized quark a in a transversely polarized proton defined

in Eq. (1), at x = 0.1 (upper panels) and x = 0.01 (lower panels) and at the scale Q2 = 4 GeV2. The proton is moving
towards the reader and is polarized along the +y direction. Since the up Sivers function is negative, the induced
distortion is positive along the +x direction for the up quark (left panels), and opposite for the down quark (right
panels).

At x = 0.1 the distortion due to the Sivers e↵ect is evident, since we are close to the maximum value of the
function shown in Fig. 1. The distortion is more pronounced for down quarks, because the Sivers function is larger
and at the same time the unpolarized TMD is smaller. The peak positions are approximately (kx)max ⇡ 0.1 GeV for
up quarks and �0.15 GeV for down quarks. At lower values of x, the distortion disappears. These plots suggest that
a virtual photon hitting a transversely polarized proton e↵ectively “sees” more up quarks to its right and more down
quarks to its left in momentum space.
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The various dimensions of the nucleon structure

data exist (0.01 . x . 0.3) should be taken with due care. At variance with previous studies, in the denominator of
the asymmetries in Eqs. (4) and (12) we are using unpolarized TMDs that were extracted from data in our previous
Pavia17 fit, with their own uncertainties. Therefore, our uncertainty bands in Fig. 1 represent a realistic estimate of
the statistical error of the Sivers function.
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Figure 2: The density distribution ⇢a
p"

of an unpolarized quark with flavor a in a proton polarized along the +y direction and moving towards the

reader, as a function of (kx, ky) at Q2 = 4 GeV2. Left panels for the up quark, right panels for the down quark. Upper panels for results at x = 0.1,
lower panels at x = 0.01. For each panel, lower ancillary plots represent the 68% uncertainty band of the distribution at ky = 0 (where the e↵ect
of the distortion due to the Sivers function is maximal) while left ancillary plots at kx = 0 (where the distribution is the same as for an unpolarized
proton). Results in the contour plots and the solid lines in the projections correspond to replica 105 (see text).

In Fig. 2, we show the density distribution ⇢a
p" of an unpolarized quark a in a transversely polarized proton defined

in Eq. (1), at x = 0.1 (upper panels) and x = 0.01 (lower panels) and at the scale Q2 = 4 GeV2. The proton is moving
towards the reader and is polarized along the +y direction. Since the up Sivers function is negative, the induced
distortion is positive along the +x direction for the up quark (left panels), and opposite for the down quark (right
panels).

At x = 0.1 the distortion due to the Sivers e↵ect is evident, since we are close to the maximum value of the
function shown in Fig. 1. The distortion is more pronounced for down quarks, because the Sivers function is larger
and at the same time the unpolarized TMD is smaller. The peak positions are approximately (kx)max ⇡ 0.1 GeV for
up quarks and �0.15 GeV for down quarks. At lower values of x, the distortion disappears. These plots suggest that
a virtual photon hitting a transversely polarized proton e↵ectively “sees” more up quarks to its right and more down
quarks to its left in momentum space.
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The various dimensions of the nucleon structure

Exclusive production

data exist (0.01 . x . 0.3) should be taken with due care. At variance with previous studies, in the denominator of
the asymmetries in Eqs. (4) and (12) we are using unpolarized TMDs that were extracted from data in our previous
Pavia17 fit, with their own uncertainties. Therefore, our uncertainty bands in Fig. 1 represent a realistic estimate of
the statistical error of the Sivers function.
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Figure 2: The density distribution ⇢a
p"

of an unpolarized quark with flavor a in a proton polarized along the +y direction and moving towards the

reader, as a function of (kx, ky) at Q2 = 4 GeV2. Left panels for the up quark, right panels for the down quark. Upper panels for results at x = 0.1,
lower panels at x = 0.01. For each panel, lower ancillary plots represent the 68% uncertainty band of the distribution at ky = 0 (where the e↵ect
of the distortion due to the Sivers function is maximal) while left ancillary plots at kx = 0 (where the distribution is the same as for an unpolarized
proton). Results in the contour plots and the solid lines in the projections correspond to replica 105 (see text).

In Fig. 2, we show the density distribution ⇢a
p" of an unpolarized quark a in a transversely polarized proton defined

in Eq. (1), at x = 0.1 (upper panels) and x = 0.01 (lower panels) and at the scale Q2 = 4 GeV2. The proton is moving
towards the reader and is polarized along the +y direction. Since the up Sivers function is negative, the induced
distortion is positive along the +x direction for the up quark (left panels), and opposite for the down quark (right
panels).

At x = 0.1 the distortion due to the Sivers e↵ect is evident, since we are close to the maximum value of the
function shown in Fig. 1. The distortion is more pronounced for down quarks, because the Sivers function is larger
and at the same time the unpolarized TMD is smaller. The peak positions are approximately (kx)max ⇡ 0.1 GeV for
up quarks and �0.15 GeV for down quarks. At lower values of x, the distortion disappears. These plots suggest that
a virtual photon hitting a transversely polarized proton e↵ectively “sees” more up quarks to its right and more down
quarks to its left in momentum space.
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The various dimensions of the nucleon structure

data exist (0.01 . x . 0.3) should be taken with due care. At variance with previous studies, in the denominator of
the asymmetries in Eqs. (4) and (12) we are using unpolarized TMDs that were extracted from data in our previous
Pavia17 fit, with their own uncertainties. Therefore, our uncertainty bands in Fig. 1 represent a realistic estimate of
the statistical error of the Sivers function.
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Figure 2: The density distribution ⇢a
p"

of an unpolarized quark with flavor a in a proton polarized along the +y direction and moving towards the

reader, as a function of (kx, ky) at Q2 = 4 GeV2. Left panels for the up quark, right panels for the down quark. Upper panels for results at x = 0.1,
lower panels at x = 0.01. For each panel, lower ancillary plots represent the 68% uncertainty band of the distribution at ky = 0 (where the e↵ect
of the distortion due to the Sivers function is maximal) while left ancillary plots at kx = 0 (where the distribution is the same as for an unpolarized
proton). Results in the contour plots and the solid lines in the projections correspond to replica 105 (see text).

In Fig. 2, we show the density distribution ⇢a
p" of an unpolarized quark a in a transversely polarized proton defined

in Eq. (1), at x = 0.1 (upper panels) and x = 0.01 (lower panels) and at the scale Q2 = 4 GeV2. The proton is moving
towards the reader and is polarized along the +y direction. Since the up Sivers function is negative, the induced
distortion is positive along the +x direction for the up quark (left panels), and opposite for the down quark (right
panels).

At x = 0.1 the distortion due to the Sivers e↵ect is evident, since we are close to the maximum value of the
function shown in Fig. 1. The distortion is more pronounced for down quarks, because the Sivers function is larger
and at the same time the unpolarized TMD is smaller. The peak positions are approximately (kx)max ⇡ 0.1 GeV for
up quarks and �0.15 GeV for down quarks. At lower values of x, the distortion disappears. These plots suggest that
a virtual photon hitting a transversely polarized proton e↵ectively “sees” more up quarks to its right and more down
quarks to its left in momentum space.
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data exist (0.01 . x . 0.3) should be taken with due care. At variance with previous studies, in the denominator of
the asymmetries in Eqs. (4) and (12) we are using unpolarized TMDs that were extracted from data in our previous
Pavia17 fit, with their own uncertainties. Therefore, our uncertainty bands in Fig. 1 represent a realistic estimate of
the statistical error of the Sivers function.
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Figure 2: The density distribution ⇢a
p"

of an unpolarized quark with flavor a in a proton polarized along the +y direction and moving towards the

reader, as a function of (kx, ky) at Q2 = 4 GeV2. Left panels for the up quark, right panels for the down quark. Upper panels for results at x = 0.1,
lower panels at x = 0.01. For each panel, lower ancillary plots represent the 68% uncertainty band of the distribution at ky = 0 (where the e↵ect
of the distortion due to the Sivers function is maximal) while left ancillary plots at kx = 0 (where the distribution is the same as for an unpolarized
proton). Results in the contour plots and the solid lines in the projections correspond to replica 105 (see text).

In Fig. 2, we show the density distribution ⇢a
p" of an unpolarized quark a in a transversely polarized proton defined

in Eq. (1), at x = 0.1 (upper panels) and x = 0.01 (lower panels) and at the scale Q2 = 4 GeV2. The proton is moving
towards the reader and is polarized along the +y direction. Since the up Sivers function is negative, the induced
distortion is positive along the +x direction for the up quark (left panels), and opposite for the down quark (right
panels).

At x = 0.1 the distortion due to the Sivers e↵ect is evident, since we are close to the maximum value of the
function shown in Fig. 1. The distortion is more pronounced for down quarks, because the Sivers function is larger
and at the same time the unpolarized TMD is smaller. The peak positions are approximately (kx)max ⇡ 0.1 GeV for
up quarks and �0.15 GeV for down quarks. At lower values of x, the distortion disappears. These plots suggest that
a virtual photon hitting a transversely polarized proton e↵ectively “sees” more up quarks to its right and more down
quarks to its left in momentum space.
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Hard exclusive meson production

Hard scale=large Q2
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Introduction Imaging Higher orders Factorisation Helicity transitions End-point contributions

Another reminder: Helicity selection rules

I selection of helcities in hard-scattering part

I ingredients: conservation of angular mom. and of chirality

• scattering collinear ! ang. mom. Jz = sum of helicities

• chirality conserved by quark-gluon and quark-photon coupling

chirality +1 �1
q helicity +1/2 �1/2
q̄ helicity �1/2 +1/2

light meson production (not J/ or ⌥)

γ∗

z

t

00

(analogous argument for graphs with gluon GPD)

I dominant transition: A(�⇤
L ! mesonL) ⇠ 1/Q

M. Diehl Some thoughts about the theory of meson production 18

γ, ρ,
ϕ, ω
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Experimental access to GPDs
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Hard exclusive meson production
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Exclusive meson photoproduction
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Introduction Imaging Higher orders Factorisation Helicity transitions End-point contributions

Another reminder: Helicity selection rules

I selection of helcities in hard-scattering part

I ingredients: conservation of angular mom. and of chirality

• scattering collinear ! ang. mom. Jz = sum of helicities

• chirality conserved by quark-gluon and quark-photon coupling

chirality +1 �1
q helicity +1/2 �1/2
q̄ helicity �1/2 +1/2

light meson production (not J/ or ⌥)
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(analogous argument for graphs with gluon GPD)

I dominant transition: A(�⇤
L ! mesonL) ⇠ 1/Q
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fixed target: medium/large xB 
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Another reminder: Helicity selection rules

I selection of helcities in hard-scattering part

I ingredients: conservation of angular mom. and of chirality

• scattering collinear ! ang. mom. Jz = sum of helicities

• chirality conserved by quark-gluon and quark-photon coupling
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Introduction Imaging Higher orders Factorisation Helicity transitions End-point contributions

Another reminder: Helicity selection rules

I selection of helcities in hard-scattering part

I ingredients: conservation of angular mom. and of chirality

• scattering collinear ! ang. mom. Jz = sum of helicities

• chirality conserved by quark-gluon and quark-photon coupling

chirality +1 �1
q helicity +1/2 �1/2
q̄ helicity �1/2 +1/2

light meson production (not J/ or ⌥)

γ∗

z

t

00

(analogous argument for graphs with gluon GPD)

I dominant transition: A(�⇤
L ! mesonL) ⇠ 1/Q
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Ultra-peripheral collisions
large–impact-parameter interactions

1. Introduction

Contributed by: K. Hencken, M. Strikman, R. Vogt and P. Yepes

In 1924 Enrico Fermi, 23 at the time, proposed the equivalent photon method [1]
which treated the moving electromagnetic fields of a charged particle as a flux of virtual

photons. A decade later, Weizsäcker and Williams applied the method [2] to relativistic

ions. Ultraperipheral collisions, UPCs, are those reactions in which two ions interact via

their cloud of virtual photons. The intensity of the electromagnetic field, and therefore

the number of photons in the cloud surrounding the nucleus, is proportional to Z2. Thus

these types of interactions are highly favored when heavy ions collide. Figure 1 shows
a schematic view of an ultraperipheral heavy-ion collision. The pancake shape of the

nuclei is due to Lorentz contraction.

b>R +R

Z

Z

A B

Figure 1. Schematic diagram of an ultraperipheral collision of two ions. The impact
parameter, b, is larger than the sum of the two radii, RA +RB. Reprinted from Ref. [3]
with permission from Elsevier.

Ultraperipheral photon-photon collisions are interactions where the radiated

photons interact with each other. In addition, photonuclear collisions, where one
radiated photon interacts with a constituent of the other nucleus, are also possible.

The two processes are illustrated in Fig. 2(a) and (b). In these diagrams the nucleus

that emits the photon remains intact after the collision. However, it is possible to have

an ultraperipheral interaction in which one or both nuclei break up. The breakup may

occur through the exchange of an additional photon, as illustrated in Fig. 2(c).

In calculations of ultraperipheral AB collisions, the impact parameter is usually
required to be larger than the sum of the two nuclear radii, b > RA + RB. Strictly

speaking, an ultraperipheral electromagnetic interaction could occur simultaneously

with a hadronic collision. However, since it is not possible to separate the hadronic and

electromagnetic components in such collisions, the hadronic components are excluded

by the impact parameter cut.
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hadronic interactions strongly suppressed
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electromagnetic components in such collisions, the hadronic components are excluded
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photon flux ∝ Z2

System
p
sAB EA EB (a) �A$B (b) E�Max (c) Erest

�Max (d) Wmax
�p (e) x�Max

pPb 115 GeV 7 TeV mB 7515 28 MeV 210 GeV 19.8 GeV 0.03
Pbp 72 GeV 2.76 TeV mB 2946 28 MeV 82 GeV 12.4 GeV 0.03
pPb 5.02 TeV 4 TeV 1.567 TeV 1.43⇥ 107 28 MeV 0.4 PeV 0.86 TeV 0.03
pPb 8.16 TeV 6.5 TeV 2.56 TeV 3.78⇥ 107 28 MeV 1 PeV 1.4 TeV 0.03
pp 13 TeV 6.5 TeV 6.5 TeV 9.6⇥ 107 116 MeV 11 PeV 4.6 TeV 0.12

Table 1: (a) Lorentz boost between nucleon rest frames �A$B ⇡
sAB

2m2
N

; (b) Maximal photon energy in UPC

in emitter rest frame, ~c
bmin

; (c) Max energy of photon in receiver rest frame �A$BE�Max; (d) Maximum

photoproduction centre of mass energy
p

2mAE�max; (e) Maximal momentum fraction transferred to

proton
smax

�N

sNN

. The A/B quantities are per nucleon.

photon PDF is not well constrained. In order to regain some theoretical control it is suggested that some89

kinematic reconstruction be done when making the experimental measurement.90

2 Defining the Signal91

Photoproduction implies a photon induced interaction, see figure 3. In pPb/Pbp collisions due to the92

enhanced photon flux from the Pb ion, the contribution of photon induced interactions from the proton93

can be considered negligible.
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Figure 3: Photoproduction in pPb/Pbp collisions.
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In what follows leading order (LO) partonic processes for colour singlet vector-meson production are95

considered. The first processes that will be discussed are classified as di↵ractive. Di↵ractive processes96

involve a colourless exchange of particles. These contributions are mediated by a photon-Pomeron exchange.97

At LO the Pomeron can be thought of as a two-gluon colour singlet state. This exchange can either leave98

the proton intact or cause the proton to be excited and disassociate. Figures 4a and 4b show what will be99

referred to as the di↵ractive and di↵ractive-dissociative contributions to J/ production respectively. In100

[15] the di↵ractive and di↵ractive-dissociative contributions were distinguished by looking for the presence101

or absence of activity in the forward detectors, to signal a dissociated or intact proton. In ep collisions the102

measured cross-sections for di↵ractive and di↵ractive-dissociative were found to be comparable [15]. The103

p2T distribution was found to be flatter for the di↵ractive-dissociative than for the pure di↵ractive case and104

the W�p distribution was found to be steeper for the di↵ractive-dissociative than for the pure di↵ractive105

contribution [15]. These di↵ractive contributions make up the exclusive signal.106
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• Ability to trigger on low pT objects (pT > 400 MeV)
• Low(er) number of visible interactions cf. ATLAS, CMS 
• Forward coverage allows high W and low gluon x to be 

probed in photoproduction

(see also R. McNulty’s talk in this session)
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High Rapidity Shower Counters at LHCb 
(HeRSCheL) JINST 13 (2018) P04017 

Installed for Run 2  (2015-2018) 

• low pT threshold: pT>400 MeV 
• particle identification 
• no detection around beam line but  
• low number of interactions 
  per beam crossing: 1.1–1.5 
• large coverage in rapidity

Herschel JHEP 10 (2018) 167 
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Exclusive single ѱ production in pp collisions
•Exclusive J/ѱ and ѱ(2S):          7 TeV and part of         13 TeV data (from 2015) 


→ xB down to 2x10-6


•Reconstruction via dimuon decay, with 2<η<4.5.

•No other detector activity.

•Quarkonia J//ѱ and ѱ(2S): 2<y<4.5 and pT<0.8 GeV22
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Figure 1. Invariant mass distribution of dimuon candidates. The J/ψ and ψ(2S) mass windows
of the signal regions are indicated by the vertical lines.

The power of HeRSCheL to discriminate CEP events can be seen in figure 3, which

shows the distributions of χ2
HRC for three classes of low-multiplicity-triggered events. The

first class is CEP-enriched dimuons: events in the nonresonant dimuon sample with

p2T < 0.01GeV2, which has a purity of 97% for electromagnetic CEP events. The second

class, inelastic-enriched J/ψ , applies the nominal J/ψ selections but requires p2T > 1GeV2,

thus selecting inelastic events with proton dissociation. The third class consists of events

with more than four tracks reconstructed. Figure 3 shows that CEP-enriched events have

lower values of χ2
HRC. To select exclusive J/ψ and ψ(2S) candidates, it is required that

log(χ2
HRC) < 3.5; this value is chosen in order to minimise the combined statistical and

systematic uncertainty on the total cross-sections. After the event selections, there are

14 753 J/ψ signal candidates and 440 ψ(2S) signal candidates remaining.

The estimation of the signal efficiency, ϵH, for the requirement log(χ2
HRC) < 3.5 is

described in section 3.1. Using this, section 3.2 explains how the purity of the signal sample

is estimated. The signal efficiency of all selection requirements is detailed in section 3.3.

3.1 HeRSCheL efficiency of selecting signal events

The efficiency for the veto on HeRSCheL activity is estimated from data using the non-

resonant calibration sample. The fits to the p2T distributions in figure 2 give the numbers

of electromagnetic CEP events with and without the HeRSCheL veto. The ratio of these

gives the efficiency of the veto, which is determined to be ϵH = 0.723 ± 0.008. The signal

loss includes in particular a contribution from events where there is an additional primary

interaction only seen in the HeRSCheL detector, as well as spill-over from previous col-

lisions, electronic noise and calibration effects, as discussed in ref. [15]. This efficiency,

measured using the nonresonant sample, is applicable to any CEP process, with the same

veto, collected in this data-taking period.

– 4 –

= Bethe-Heitler process
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Figure 5. Differential cross-sections compared to LO and NLO theory JMRT predictions [28, 29] for
the J/ψ meson (top) and the ψ(2S) meson (bottom). The inner error bar represents the statistical
uncertainty; the outer is the total uncertainty. Since the systematic uncertainty for the ψ(2S) meson
is negligible with respect to the statistical uncertainty, it is almost not visible in the lower figure.

addition of new scintillators in the forward region has resulted in lower backgrounds in pp

collisions at a centre-of-mass energy
√
s = 13TeV compared to the previous measurement

at
√
s = 7TeV. As a consequence, the systematic uncertainty on the J/ψ cross-section

is reduced from 5.6% at
√
s = 7TeV to 2.7% at

√
s = 13TeV, reflecting an improved

understanding of the background proton-dissociation process. After correcting for the

muon acceptance, the cross-sections for the J/ψ and ψ(2S) mesons are compared to theory

and found to be in better agreement with the JMRT NLO rather than LO predictions.

The derived cross-section for J/ψ photoproduction shows a deviation from a pure power-

law extrapolation of H1 data, while the ψ(2S) results are consistent although more data

are required in this channel to make a critical comparison.
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dσ
dy

ðpþ Pb → pð#Þ þ Pbþ J=ψÞ

¼
NJ=ψ

ðA × ϵÞJ=ψ × ð1þ fDÞ × L × ϵveto × BR × Δy
; ð4Þ

where NJ=ψ is the number of reconstructed exclusive or
dissociative J=ψ in the dimuon decay channel, ðA × ϵÞJ=ψ
is the corresponding factor of acceptance times
reconstruction efficiency in the rapidity interval studied,
and BR ¼ ð5.961& 0.033Þ% is the branching ratio for the
decay into a muon pair [60].
The cross section dσ=dyðpþ Pb → pð#Þ þ Pbþ J=ψÞ is

related to the γp cross section σðγ þ p → J=ψ þ pð#ÞÞ
through the photon flux dn=dk,

dσ
dy

ðpþ Pb → pð#Þ þ Pbþ J=ψÞ

¼ k
dn
dk

σðγ þ p → J=ψ þ pð#ÞÞ: ð5Þ

Here, k is the photon energy, which is determined by the
J=ψ mass and rapidity, k ¼ ð1=2ÞMJ=ψ exp ð−yÞ. The
photon flux is calculated using STARlight in impact
parameter space and convoluted with the probability of
no hadronic interaction. The average photon flux values for
the different rapidity intervals are listed in Table III,
together with the extracted cross sections σðγ þ p →
J=ψ þ pÞ and σðγ þ p → J=ψ þ pð#ÞÞ and the correspond-
ing hWγpi. The latter is computed as the average of Wγp

weighted by the cross section σðγpÞ from STARlight.

1. Exclusive J=ψ photoproduction

Figure 6 shows the exclusive J=ψ photoproduction cross
section σðγ þ p → J=ψ þ pÞ reported in Table III as a
function of Wγp, covering the range 27 < Wγp < 57 GeV.
Comparisons with previous measurements and with several
theoretical models are also shown.

Measurements at low Wγp were performed by fixed
target experiments, such as those reported by the E401 [66],
E516 [67], and E687 [68] Collaborations. Recently, mea-
surements were performed near threshold by the GlueX
Collaboration [72] and by the E12-16-007 experiment [73]
which are not shown in Fig. 6 since they fall outside of the
power-law applicability discussed below.
The cross sections are also compared with previous

ALICE results in p-Pb at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV [14,69], at
forward, mid, and backward rapidity, covering the energy
range 21 < Wγp < 952 GeV.
In this analysis, a χ2 fit of a power-law function,

NðWγp=W0Þδ, is performed to the two ALICE datasets atffiffiffiffiffiffiffiffi
sNN

p ¼ 8.16 and
ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV together, with W0 ¼
90.0 GeV, as done in HERA analyses [38–40] and for

TABLE III. Rapidity differential cross sections dσexcJ=ψ=dy and dσdissJ=ψ=dy and the corresponding cross sections
σðγ þ p → J=ψ þ pÞ and σðγ þ p → J=ψ þ pð#ÞÞ for exclusive and dissociative J=ψ photoproduction off protons in
p-Pb UPCs at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 8.16 TeV for each rapidity range. The first uncertainty is the statistical one and the second
uncertainty is the systematic one. The numbers of events obtained from signal extraction with their statistical
uncertainties, Nexc

J=ψ and Ndiss
J=ψ , the photon flux, and the range and the mean of Wγp are also presented.

Rapidity
range Nexc

J=ψ , N
diss
J=ψ

dσexcJ=ψ=dy,
dσdissJ=ψ=dy (μb) kdn=dk Wγp (GeV) hWγpi (GeV)

σðγ þ p → J=ψ þ pÞ (nb),
σðγ þ p → J=ψ þ pð#ÞÞ (nb)

(2.5, 4) 1180& 84 8.13& 0.58& 0.43 209& 4 (27, 57) 39.9 39.0& 2.8& 2.2
1515& 83 10.43& 0.57& 1.39 50.0& 2.7& 6.7

(3.25, 4) 564& 53 7.16& 0.67& 0.48 220& 4 (27, 39) 32.8 32.51& 3.0& 2.3
733& 52 9.31& 0.66& 1.28 42.3& 3.0& 5.9

(2.5, 3.25) 629& 54 9.21& 0.80& 0.51 197& 4 (39, 57) 47.7 46.8& 4.1& 2.8
768& 55 11.26& 0.80& 1.53 57.2& 4.1& 7.8

FIG. 6. Exclusive J=ψ photoproduction cross section off
protons measured as a function of the center-of-mass energy
of the photon-proton system Wγp by ALICE in p-Pb UPCs and
compared with previous measurements [14,38–40,43–45,66–69]
and with next-to-leading-order JMRT [70,71] and CCT [37]
models. The power-law fit to the ALICE data is also shown. The
uncertainties of the data points are the quadratic sum of the
statistical and systematic uncertainties.
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dσ
dy

ðpþ Pb → pð#Þ þ Pbþ J=ψÞ

¼
NJ=ψ

ðA × ϵÞJ=ψ × ð1þ fDÞ × L × ϵveto × BR × Δy
; ð4Þ

where NJ=ψ is the number of reconstructed exclusive or
dissociative J=ψ in the dimuon decay channel, ðA × ϵÞJ=ψ
is the corresponding factor of acceptance times
reconstruction efficiency in the rapidity interval studied,
and BR ¼ ð5.961& 0.033Þ% is the branching ratio for the
decay into a muon pair [60].
The cross section dσ=dyðpþ Pb → pð#Þ þ Pbþ J=ψÞ is

related to the γp cross section σðγ þ p → J=ψ þ pð#ÞÞ
through the photon flux dn=dk,

dσ
dy

ðpþ Pb → pð#Þ þ Pbþ J=ψÞ

¼ k
dn
dk

σðγ þ p → J=ψ þ pð#ÞÞ: ð5Þ

Here, k is the photon energy, which is determined by the
J=ψ mass and rapidity, k ¼ ð1=2ÞMJ=ψ exp ð−yÞ. The
photon flux is calculated using STARlight in impact
parameter space and convoluted with the probability of
no hadronic interaction. The average photon flux values for
the different rapidity intervals are listed in Table III,
together with the extracted cross sections σðγ þ p →
J=ψ þ pÞ and σðγ þ p → J=ψ þ pð#ÞÞ and the correspond-
ing hWγpi. The latter is computed as the average of Wγp

weighted by the cross section σðγpÞ from STARlight.

1. Exclusive J=ψ photoproduction

Figure 6 shows the exclusive J=ψ photoproduction cross
section σðγ þ p → J=ψ þ pÞ reported in Table III as a
function of Wγp, covering the range 27 < Wγp < 57 GeV.
Comparisons with previous measurements and with several
theoretical models are also shown.

Measurements at low Wγp were performed by fixed
target experiments, such as those reported by the E401 [66],
E516 [67], and E687 [68] Collaborations. Recently, mea-
surements were performed near threshold by the GlueX
Collaboration [72] and by the E12-16-007 experiment [73]
which are not shown in Fig. 6 since they fall outside of the
power-law applicability discussed below.
The cross sections are also compared with previous

ALICE results in p-Pb at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV [14,69], at
forward, mid, and backward rapidity, covering the energy
range 21 < Wγp < 952 GeV.
In this analysis, a χ2 fit of a power-law function,

NðWγp=W0Þδ, is performed to the two ALICE datasets atffiffiffiffiffiffiffiffi
sNN

p ¼ 8.16 and
ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV together, with W0 ¼
90.0 GeV, as done in HERA analyses [38–40] and for

TABLE III. Rapidity differential cross sections dσexcJ=ψ=dy and dσdissJ=ψ=dy and the corresponding cross sections
σðγ þ p → J=ψ þ pÞ and σðγ þ p → J=ψ þ pð#ÞÞ for exclusive and dissociative J=ψ photoproduction off protons in
p-Pb UPCs at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 8.16 TeV for each rapidity range. The first uncertainty is the statistical one and the second
uncertainty is the systematic one. The numbers of events obtained from signal extraction with their statistical
uncertainties, Nexc

J=ψ and Ndiss
J=ψ , the photon flux, and the range and the mean of Wγp are also presented.

Rapidity
range Nexc

J=ψ , N
diss
J=ψ

dσexcJ=ψ=dy,
dσdissJ=ψ=dy (μb) kdn=dk Wγp (GeV) hWγpi (GeV)

σðγ þ p → J=ψ þ pÞ (nb),
σðγ þ p → J=ψ þ pð#ÞÞ (nb)

(2.5, 4) 1180& 84 8.13& 0.58& 0.43 209& 4 (27, 57) 39.9 39.0& 2.8& 2.2
1515& 83 10.43& 0.57& 1.39 50.0& 2.7& 6.7

(3.25, 4) 564& 53 7.16& 0.67& 0.48 220& 4 (27, 39) 32.8 32.51& 3.0& 2.3
733& 52 9.31& 0.66& 1.28 42.3& 3.0& 5.9

(2.5, 3.25) 629& 54 9.21& 0.80& 0.51 197& 4 (39, 57) 47.7 46.8& 4.1& 2.8
768& 55 11.26& 0.80& 1.53 57.2& 4.1& 7.8

FIG. 6. Exclusive J=ψ photoproduction cross section off
protons measured as a function of the center-of-mass energy
of the photon-proton system Wγp by ALICE in p-Pb UPCs and
compared with previous measurements [14,38–40,43–45,66–69]
and with next-to-leading-order JMRT [70,71] and CCT [37]
models. The power-law fit to the ALICE data is also shown. The
uncertainties of the data points are the quadratic sum of the
statistical and systematic uncertainties.
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dσ
dy

ðpþ Pb → pð#Þ þ Pbþ J=ψÞ

¼
NJ=ψ

ðA × ϵÞJ=ψ × ð1þ fDÞ × L × ϵveto × BR × Δy
; ð4Þ

where NJ=ψ is the number of reconstructed exclusive or
dissociative J=ψ in the dimuon decay channel, ðA × ϵÞJ=ψ
is the corresponding factor of acceptance times
reconstruction efficiency in the rapidity interval studied,
and BR ¼ ð5.961& 0.033Þ% is the branching ratio for the
decay into a muon pair [60].
The cross section dσ=dyðpþ Pb → pð#Þ þ Pbþ J=ψÞ is

related to the γp cross section σðγ þ p → J=ψ þ pð#ÞÞ
through the photon flux dn=dk,

dσ
dy

ðpþ Pb → pð#Þ þ Pbþ J=ψÞ

¼ k
dn
dk

σðγ þ p → J=ψ þ pð#ÞÞ: ð5Þ

Here, k is the photon energy, which is determined by the
J=ψ mass and rapidity, k ¼ ð1=2ÞMJ=ψ exp ð−yÞ. The
photon flux is calculated using STARlight in impact
parameter space and convoluted with the probability of
no hadronic interaction. The average photon flux values for
the different rapidity intervals are listed in Table III,
together with the extracted cross sections σðγ þ p →
J=ψ þ pÞ and σðγ þ p → J=ψ þ pð#ÞÞ and the correspond-
ing hWγpi. The latter is computed as the average of Wγp

weighted by the cross section σðγpÞ from STARlight.

1. Exclusive J=ψ photoproduction

Figure 6 shows the exclusive J=ψ photoproduction cross
section σðγ þ p → J=ψ þ pÞ reported in Table III as a
function of Wγp, covering the range 27 < Wγp < 57 GeV.
Comparisons with previous measurements and with several
theoretical models are also shown.

Measurements at low Wγp were performed by fixed
target experiments, such as those reported by the E401 [66],
E516 [67], and E687 [68] Collaborations. Recently, mea-
surements were performed near threshold by the GlueX
Collaboration [72] and by the E12-16-007 experiment [73]
which are not shown in Fig. 6 since they fall outside of the
power-law applicability discussed below.
The cross sections are also compared with previous

ALICE results in p-Pb at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV [14,69], at
forward, mid, and backward rapidity, covering the energy
range 21 < Wγp < 952 GeV.
In this analysis, a χ2 fit of a power-law function,

NðWγp=W0Þδ, is performed to the two ALICE datasets atffiffiffiffiffiffiffiffi
sNN

p ¼ 8.16 and
ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV together, with W0 ¼
90.0 GeV, as done in HERA analyses [38–40] and for

TABLE III. Rapidity differential cross sections dσexcJ=ψ=dy and dσdissJ=ψ=dy and the corresponding cross sections
σðγ þ p → J=ψ þ pÞ and σðγ þ p → J=ψ þ pð#ÞÞ for exclusive and dissociative J=ψ photoproduction off protons in
p-Pb UPCs at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 8.16 TeV for each rapidity range. The first uncertainty is the statistical one and the second
uncertainty is the systematic one. The numbers of events obtained from signal extraction with their statistical
uncertainties, Nexc

J=ψ and Ndiss
J=ψ , the photon flux, and the range and the mean of Wγp are also presented.

Rapidity
range Nexc

J=ψ , N
diss
J=ψ

dσexcJ=ψ=dy,
dσdissJ=ψ=dy (μb) kdn=dk Wγp (GeV) hWγpi (GeV)

σðγ þ p → J=ψ þ pÞ (nb),
σðγ þ p → J=ψ þ pð#ÞÞ (nb)

(2.5, 4) 1180& 84 8.13& 0.58& 0.43 209& 4 (27, 57) 39.9 39.0& 2.8& 2.2
1515& 83 10.43& 0.57& 1.39 50.0& 2.7& 6.7

(3.25, 4) 564& 53 7.16& 0.67& 0.48 220& 4 (27, 39) 32.8 32.51& 3.0& 2.3
733& 52 9.31& 0.66& 1.28 42.3& 3.0& 5.9

(2.5, 3.25) 629& 54 9.21& 0.80& 0.51 197& 4 (39, 57) 47.7 46.8& 4.1& 2.8
768& 55 11.26& 0.80& 1.53 57.2& 4.1& 7.8

FIG. 6. Exclusive J=ψ photoproduction cross section off
protons measured as a function of the center-of-mass energy
of the photon-proton system Wγp by ALICE in p-Pb UPCs and
compared with previous measurements [14,38–40,43–45,66–69]
and with next-to-leading-order JMRT [70,71] and CCT [37]
models. The power-law fit to the ALICE data is also shown. The
uncertainties of the data points are the quadratic sum of the
statistical and systematic uncertainties.
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dσ
dy

ðpþ Pb → pð#Þ þ Pbþ J=ψÞ

¼
NJ=ψ

ðA × ϵÞJ=ψ × ð1þ fDÞ × L × ϵveto × BR × Δy
; ð4Þ

where NJ=ψ is the number of reconstructed exclusive or
dissociative J=ψ in the dimuon decay channel, ðA × ϵÞJ=ψ
is the corresponding factor of acceptance times
reconstruction efficiency in the rapidity interval studied,
and BR ¼ ð5.961& 0.033Þ% is the branching ratio for the
decay into a muon pair [60].
The cross section dσ=dyðpþ Pb → pð#Þ þ Pbþ J=ψÞ is

related to the γp cross section σðγ þ p → J=ψ þ pð#ÞÞ
through the photon flux dn=dk,

dσ
dy

ðpþ Pb → pð#Þ þ Pbþ J=ψÞ

¼ k
dn
dk

σðγ þ p → J=ψ þ pð#ÞÞ: ð5Þ

Here, k is the photon energy, which is determined by the
J=ψ mass and rapidity, k ¼ ð1=2ÞMJ=ψ exp ð−yÞ. The
photon flux is calculated using STARlight in impact
parameter space and convoluted with the probability of
no hadronic interaction. The average photon flux values for
the different rapidity intervals are listed in Table III,
together with the extracted cross sections σðγ þ p →
J=ψ þ pÞ and σðγ þ p → J=ψ þ pð#ÞÞ and the correspond-
ing hWγpi. The latter is computed as the average of Wγp

weighted by the cross section σðγpÞ from STARlight.

1. Exclusive J=ψ photoproduction

Figure 6 shows the exclusive J=ψ photoproduction cross
section σðγ þ p → J=ψ þ pÞ reported in Table III as a
function of Wγp, covering the range 27 < Wγp < 57 GeV.
Comparisons with previous measurements and with several
theoretical models are also shown.

Measurements at low Wγp were performed by fixed
target experiments, such as those reported by the E401 [66],
E516 [67], and E687 [68] Collaborations. Recently, mea-
surements were performed near threshold by the GlueX
Collaboration [72] and by the E12-16-007 experiment [73]
which are not shown in Fig. 6 since they fall outside of the
power-law applicability discussed below.
The cross sections are also compared with previous

ALICE results in p-Pb at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV [14,69], at
forward, mid, and backward rapidity, covering the energy
range 21 < Wγp < 952 GeV.
In this analysis, a χ2 fit of a power-law function,

NðWγp=W0Þδ, is performed to the two ALICE datasets atffiffiffiffiffiffiffiffi
sNN

p ¼ 8.16 and
ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV together, with W0 ¼
90.0 GeV, as done in HERA analyses [38–40] and for

TABLE III. Rapidity differential cross sections dσexcJ=ψ=dy and dσdissJ=ψ=dy and the corresponding cross sections
σðγ þ p → J=ψ þ pÞ and σðγ þ p → J=ψ þ pð#ÞÞ for exclusive and dissociative J=ψ photoproduction off protons in
p-Pb UPCs at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 8.16 TeV for each rapidity range. The first uncertainty is the statistical one and the second
uncertainty is the systematic one. The numbers of events obtained from signal extraction with their statistical
uncertainties, Nexc

J=ψ and Ndiss
J=ψ , the photon flux, and the range and the mean of Wγp are also presented.

Rapidity
range Nexc

J=ψ , N
diss
J=ψ

dσexcJ=ψ=dy,
dσdissJ=ψ=dy (μb) kdn=dk Wγp (GeV) hWγpi (GeV)

σðγ þ p → J=ψ þ pÞ (nb),
σðγ þ p → J=ψ þ pð#ÞÞ (nb)

(2.5, 4) 1180& 84 8.13& 0.58& 0.43 209& 4 (27, 57) 39.9 39.0& 2.8& 2.2
1515& 83 10.43& 0.57& 1.39 50.0& 2.7& 6.7

(3.25, 4) 564& 53 7.16& 0.67& 0.48 220& 4 (27, 39) 32.8 32.51& 3.0& 2.3
733& 52 9.31& 0.66& 1.28 42.3& 3.0& 5.9

(2.5, 3.25) 629& 54 9.21& 0.80& 0.51 197& 4 (39, 57) 47.7 46.8& 4.1& 2.8
768& 55 11.26& 0.80& 1.53 57.2& 4.1& 7.8

FIG. 6. Exclusive J=ψ photoproduction cross section off
protons measured as a function of the center-of-mass energy
of the photon-proton system Wγp by ALICE in p-Pb UPCs and
compared with previous measurements [14,38–40,43–45,66–69]
and with next-to-leading-order JMRT [70,71] and CCT [37]
models. The power-law fit to the ALICE data is also shown. The
uncertainties of the data points are the quadratic sum of the
statistical and systematic uncertainties.
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dσ
dy

ðpþ Pb → pð#Þ þ Pbþ J=ψÞ

¼
NJ=ψ

ðA × ϵÞJ=ψ × ð1þ fDÞ × L × ϵveto × BR × Δy
; ð4Þ

where NJ=ψ is the number of reconstructed exclusive or
dissociative J=ψ in the dimuon decay channel, ðA × ϵÞJ=ψ
is the corresponding factor of acceptance times
reconstruction efficiency in the rapidity interval studied,
and BR ¼ ð5.961& 0.033Þ% is the branching ratio for the
decay into a muon pair [60].
The cross section dσ=dyðpþ Pb → pð#Þ þ Pbþ J=ψÞ is

related to the γp cross section σðγ þ p → J=ψ þ pð#ÞÞ
through the photon flux dn=dk,

dσ
dy

ðpþ Pb → pð#Þ þ Pbþ J=ψÞ

¼ k
dn
dk

σðγ þ p → J=ψ þ pð#ÞÞ: ð5Þ

Here, k is the photon energy, which is determined by the
J=ψ mass and rapidity, k ¼ ð1=2ÞMJ=ψ exp ð−yÞ. The
photon flux is calculated using STARlight in impact
parameter space and convoluted with the probability of
no hadronic interaction. The average photon flux values for
the different rapidity intervals are listed in Table III,
together with the extracted cross sections σðγ þ p →
J=ψ þ pÞ and σðγ þ p → J=ψ þ pð#ÞÞ and the correspond-
ing hWγpi. The latter is computed as the average of Wγp

weighted by the cross section σðγpÞ from STARlight.

1. Exclusive J=ψ photoproduction

Figure 6 shows the exclusive J=ψ photoproduction cross
section σðγ þ p → J=ψ þ pÞ reported in Table III as a
function of Wγp, covering the range 27 < Wγp < 57 GeV.
Comparisons with previous measurements and with several
theoretical models are also shown.

Measurements at low Wγp were performed by fixed
target experiments, such as those reported by the E401 [66],
E516 [67], and E687 [68] Collaborations. Recently, mea-
surements were performed near threshold by the GlueX
Collaboration [72] and by the E12-16-007 experiment [73]
which are not shown in Fig. 6 since they fall outside of the
power-law applicability discussed below.
The cross sections are also compared with previous

ALICE results in p-Pb at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV [14,69], at
forward, mid, and backward rapidity, covering the energy
range 21 < Wγp < 952 GeV.
In this analysis, a χ2 fit of a power-law function,

NðWγp=W0Þδ, is performed to the two ALICE datasets atffiffiffiffiffiffiffiffi
sNN

p ¼ 8.16 and
ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV together, with W0 ¼
90.0 GeV, as done in HERA analyses [38–40] and for

TABLE III. Rapidity differential cross sections dσexcJ=ψ=dy and dσdissJ=ψ=dy and the corresponding cross sections
σðγ þ p → J=ψ þ pÞ and σðγ þ p → J=ψ þ pð#ÞÞ for exclusive and dissociative J=ψ photoproduction off protons in
p-Pb UPCs at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 8.16 TeV for each rapidity range. The first uncertainty is the statistical one and the second
uncertainty is the systematic one. The numbers of events obtained from signal extraction with their statistical
uncertainties, Nexc

J=ψ and Ndiss
J=ψ , the photon flux, and the range and the mean of Wγp are also presented.

Rapidity
range Nexc

J=ψ , N
diss
J=ψ

dσexcJ=ψ=dy,
dσdissJ=ψ=dy (μb) kdn=dk Wγp (GeV) hWγpi (GeV)

σðγ þ p → J=ψ þ pÞ (nb),
σðγ þ p → J=ψ þ pð#ÞÞ (nb)

(2.5, 4) 1180& 84 8.13& 0.58& 0.43 209& 4 (27, 57) 39.9 39.0& 2.8& 2.2
1515& 83 10.43& 0.57& 1.39 50.0& 2.7& 6.7

(3.25, 4) 564& 53 7.16& 0.67& 0.48 220& 4 (27, 39) 32.8 32.51& 3.0& 2.3
733& 52 9.31& 0.66& 1.28 42.3& 3.0& 5.9

(2.5, 3.25) 629& 54 9.21& 0.80& 0.51 197& 4 (39, 57) 47.7 46.8& 4.1& 2.8
768& 55 11.26& 0.80& 1.53 57.2& 4.1& 7.8

FIG. 6. Exclusive J=ψ photoproduction cross section off
protons measured as a function of the center-of-mass energy
of the photon-proton system Wγp by ALICE in p-Pb UPCs and
compared with previous measurements [14,38–40,43–45,66–69]
and with next-to-leading-order JMRT [70,71] and CCT [37]
models. The power-law fit to the ALICE data is also shown. The
uncertainties of the data points are the quadratic sum of the
statistical and systematic uncertainties.
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Exclusive single ϒ production in pp collisions

J
H
E
P
0
9
(
2
0
1
5
)
0
8
4

)2
c) (MeV/-µ+µm(

9000 10000 11000 12000

 )2
c

E
v
en

ts
 /

 (
 6

0
 M

eV
/

0

20

40

60

80

100

120

140

160

180

Total

 4.5≤ y≤(nS) signal, 2ϒ

Non-resonant background

LHCb

Figure 2. Invariant dimuon mass spectrum for 7TeV and 8TeV data in the rapidity range 2 <
y(Υ) < 4.5 (black points). The fit PDF is superimposed (solid blue line). The Υ(1S, 2S, 3S)
signal components, used to derive weights, are indicated with a long-dashed (red) line, and the
non-resonant background is marked with a short-dashed (grey) line.

The feed-down background is estimated using a combination of data and simulation,

considering χb(mP ) → Υ(nS)γ decays. Events are considered in the data set if exactly

one photon is found in addition to the Υ candidate. Regions in the Υγ invariant mass

spectrum are defined, corresponding to the χb(1P, 2P, 3P ) states, and the number of χb

candidates, Nχb , for each decay χb(mP ) → Υ(nS)γ is counted. An estimate of the total

feed-down content of the Υ data sample from each χb state is found using the expression:

Nfeed-down, χb(mP )→Υ(nS)γ =
Nχb × F

ϵγ × ϵmass-range
. (4.1)

Here F is the purity of the Υ(nS) in the corresponding mass window with respect to the

non-resonant µ+µ−γ background, determined by fitting the dimuon mass spectrum for

events with exactly one reconstructed photon; ϵγ is the efficiency for reconstructing the

photon produced in each χb(mP ) decay, determined using simulated exclusive χb(mP ) →
Υ(nS)γ decays; and ϵmass-range = 0.9 corrects for the fraction of signal Υ candidates which

are expected to fall outside the mass window. There are too few Υ(3S)γ candidates to

estimate the purity precisely so it is assumed to be 100%. Because of limited mass resolution

and small sample sizes the χb spin states cannot be resolved, so equal contributions from

the χb1(mP ) and χb2(mP ) states are assumed. The χb0 radiative decay rate is expected to

be relatively suppressed and is therefore neglected [23]. The feed-down background yields

are given in table 2.

Since the mass shapes for signal and background do not significantly depend on pT over

the pT range considered, the p2T distribution of the Υ candidates is determined using the

sPlot technique [25]. A fit is then performed to the p2T distribution, shown in figure 3, using

candidates in the full rapidity range 2.0 < y(Υ) < 4.5, with fit components corresponding

to the Υ signal, inelastic background and feed-down background. The fraction of exclusive

signal calculated from this fit is assumed to be the same for each rapidity bin.
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Figure 4. Measurements of exclusive Υ(1S) photoproduction compared to theoretical predictions.
In (a), the Υ(1S) cross-section in bins of rapidity is shown, compared to LO and NLO predictions.
The LHCb measurements are indicated by black points with error bars for uncorrelated errors, and
solid rectangles indicating the total uncertainty. In (b), the photon-proton cross-sections extracted
from the LHCb results are indicated by black points, where the statistical and systematic uncer-
tainties are combined in quadrature. The entire W -region in which these LHCb measurements are
sensitive is indicated. Measurements made by H1 and ZEUS in the low-W region are indicated by
red and blue markers, respectively [4, 5, 7]. Predictions from ref. [1] are included, resulting from
LO and NLO fits to exclusive J/ψ production data. The filled bands indicate the theoretical un-
certainties on the 7TeV prediction and the solid lines indicate the central values of the predictions
for 8TeV. In (b) predictions from ref. [2] using different models for the Υ(1S) wave function are
included, indicated by ‘bCGC’.

cross-section is given by

dσth(pp → pΥ(1S)p)

dy
= S2(W+)

(
k+

dn

dk+

)
σth+ (γp) + S2(W−)

(
k−

dn

dk−

)
σth− (γp), (6.2)

where the predictions for the photon-proton cross-section are weighted by absorptive correc-

tions S2(W±) and the photon fluxes dn
dk±

for photons of energy k± ≈ (MΥ(nS)/2) exp(±|y|).
The absorptive corrections and photon fluxes are computed following ref. [1].

The three bins of Υ(1S) rapidity chosen in this analysis correspond to ranges of W

for the W+ and W− solutions. The contribution to the total cross-section from the W−
solutions is expected to be small and is therefore neglected. The dominant W+ solutions

are therefore estimated assuming that they dominate the cross-section, and are shown in

figure 4b. The magnitude of the theoretical prediction for the W− solutions is added as

a systematic uncertainty. The good agreement with the NLO prediction seen in figure 4a

is reproduced. The LHCb measurements probe a new kinematic region complementary to

that studied at HERA [4, 5, 7], as seen in figure 4b, and discriminate between LO and NLO

predictions. In figure 4b, the LHCb data are also compared to the predictions given in

ref. [2] using models conforming to the colour glass condensate (CGC) formalism [29] that

take into account the t-dependence of the differential cross-section. All agree well with the

data. The solid (black) and dotted (blue) lines correspond to two different models for the

scalar part of the vector-meson wave function.

– 11 –
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What object are we probing?

coherent scattering

incoherent scattering

Coherent interaction: interaction with target as a whole.

∼ target remains in same quantum state.


Incoherent interaction: interaction with constituents inside target.

∼ target does not remain in same quantum state.

    Ex.: target dissociation, excitation

Classification of di↵ractive events

Coherent di↵raction:

Target remains in the same quantum state, e.g.
� + p ! J/ + p

Probes average interaction

d��⇤
A!VA

dt
⇠ |hA�⇤

A!VAi⌦|2

h i⌦: average over target configurations ⌦
Recall:

A�⇤
p!Vp ⇠

Z
d2bdzd2r �⇤ V (r , z ,Q2)e�ib·�N⌦(r , xP,b)

Incoherent di↵raction:

E.g. � + p ! J/ + p⇤

Targe proton dissociates (p⇤ ! X ).
Gѫ
�G
W�

|t|

Coherent/Elastic

Incoherent/Breakup

W1 W2 W3 W4

Good, Walker, PRD 120, 1960

Miettinen, Pumplin, PRD 18, 1978

Kovchegov, McLerran, PRD 60, 1999

Kovner, Wiedemann, PRD 64, 2001

Mäntysaari, Rept. Prog. Phys. 83, 2020

Heikki Mäntysaari (JYU) Incoherent di↵raction Mar 23, 2021 4 / 13
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Coherent production

Nuclear GPDs (PDFs at low xB)

Probing saturation
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Figure 3.5: The non-linear small-x evolution of a hadronic or nuclear wave functions. All partons
(quarks and gluons) are denoted by straight solid lines for simplicity.

We see that something has to modify the
BFKL evolution at high energy to prevent
it from becoming unphysically large. The
modification is illustrated on the far right of
Fig. 3.5. At very high energies (leading to
high gluon densities), partons may start to

recombine with each other on top of the split-
ting. The recombination of two partons into
one is proportional to the number of pairs
of partons, which in turn scales as N

2. We
end up with the following non-linear evolu-
tion equation:

@N(x, rT )

@ ln(1/x)
= ↵sKBFKL ⌦ N(x, rT )� ↵s [N(x, rT )]

2
. (3.3)

This is the Balitsky-Kovchegov (BK) evolu-
tion equation [147, 148, 149], which is valid
for QCD in the limit of the large number
of colors Nc.3 A generalization of Eq. (3.3)
beyond the large-Nc limit is accomplished
by the Jalilian-Marian–Iancu–McLerran–
Weigert–Leonidov–Kovner (JIMWLK) [143,
152, 153, 154, 155] evolution equation, which
is a functional di↵erential equation.

The physical impact of the quadratic
term on the right of Eq. (3.3) is clear: it

slows down the small-x evolution, leading to
parton saturation, when the number density
of partons stops growing with decreasing x.
The corresponding total cross-sections sat-
isfy the black disk limit of Eq. (3.2). The
e↵ect of gluon mergers becomes important
when the quadratic term in Eq. (3.3) be-
comes comparable to the linear term on the
right-hand-side. This gives rise to the satu-
ration scale Qs, which grows as Q2

s ⇠ (1/x)�

with decreasing x [150, 156, 157].

Classical Gluon Fields and the Nuclear “Oomph” Factor

We have argued above that parton satu-
ration is a universal phenomenon, valid both
for scattering on a proton or a nucleus. Here
we demonstrate that nuclei provide an extra
enhancement of the saturation phenomenon,
making it easier to observe and study exper-
imentally.

Imagine a large nucleus (a heavy ion),
which was boosted to some ultra-relativistic

velocity, as shown in Fig. 3.6. We are inter-
ested in the dynamics of small-x gluons in
the wave-function of this relativistic nucleus.
One can show that due to the Heisenberg
uncertainty principle, the small-x gluons in-
teract with the whole nucleus coherently in
the longitudinal (beam) direction, Therefore,
only the transverse plane distribution of nu-
cleons is important for the small-x wave-

3An equation of this type was originally suggested by Gribov, Levin and Ryskin in [150] and by Mueller
and Qiu in [151], though at the time it was assumed that the quadratic term was only the first non-linear
correction with higher order terms expected to be present as well. In [147, 148], the exact form of the
equation was found, and it was shown that in the large-Nc limit Eq. (3.3) does not have any higher-order
terms in N .
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of saturation effect for ions

Boost

Figure 3.6: A large nucleus before and after an ultra-relativistic boost.

function. As one can see from Fig. 3.6, af-
ter the boost, the nucleons, as “seen” by the
small-x gluons with large longitudinal wave-
length, appear to overlap with each other in
the transverse plane, leading to high parton
density. A large occupation number of color
charges (partons) leads to a classical gluon
field dominating the small-x wave-function
of the nucleus. This is the essence of the
McLerran-Venugopalan (MV) model [158].
According to the MV model, the dominant
gluon field is given by the solution of the
classical Yang-Mills equations, which are the
QCD analogue of Maxwell equations of elec-
trodynamics.

The Yang-Mills equations were solved for
a single nucleus exactly [159, 160]; their so-
lution was used to construct an unintegrated
gluon distribution (gluon TMD) �(x, k2T )
shown in Fig. 3.7 (multiplied by the phase
space factor of the gluon’s transverse mo-
mentum kT ) as a function of kT .4 Fig. 3.7
demonstrates the emergence of the satu-
ration scale Qs. The majority of gluons
in this classical distribution have transverse
momentum kT ⇡ Qs. Note that the gluon
distribution slows down its growth with de-
creasing kT for kT < Qs (from a power-law
of kT to a logarithm, as can be shown by
explicit calculations). The distribution sat-
urates, justifying the name of the saturation
scale.

The gluon field arises from all the nucle-
ons in the nucleus at a given location in the
transverse plane (impact parameter). Away
from the edges, the nucleon density in the
nucleus is approximately constant. There-
fore, the number of nucleons at a fixed im-
pact parameter is simply proportional to the
thickness of the nucleus in the longitudinal
(beam) direction.

αs << 1αs ∼ 1 ΛQCD
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Figure 3.7: The unintegrated gluon distribu-
tion (gluon TMD) �(x, k2T ) of a large nucleus
due to classical gluon fields (solid line). The
dashed curve denotes the lowest-order pertur-
bative result.

For a large nucleus, that thickness, in
turn, is proportional to the nuclear radius
R ⇠ A

1/3 with the nuclear mass number A.
The transverse momentum of the gluon can
be thought of as arising from many trans-

4Note that in the MV model �(x, k2
T ) is independent of Bjorken-x. Its x-dependence comes in though

the BK/JIMWLK evolution equations described above.
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Coherent J/ѱ in PbPb UPCs – selection
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sNN =•               5.02 TeV data.


•  

• Reconstruction via dimuon decay, with offline selection: 2<ημ<4.5 and pT,μ> 700 MeV

• 2<yJ/ѱ<4.5 → xB down to 10-5

• pT<1 GeV

<latexit sha1_base64="EzC1lkt0sRoqCKvJHD2qGnLvQl4=">AAACEHicbVC7SgNBFJ2Nrxhfq5Y2g0G0MewGxTRC0MbCIoJ5QDaG2ckkGTKzu8zcFcOyn2Djr9hYKGJraeffOHkUmnhg4HDOvdw5x48E1+A431ZmYXFpeSW7mltb39jcsrd3ajqMFWVVGopQNXyimeABqwIHwRqRYkT6gtX9weXIr98zpXkY3MIwYi1JegHvckrASG378LrtAXuAhAeQnheLJS+S2HWwJ+OJ7qd3ybGbtu28U3DGwPPEnZI8mqLStr+8TkhjyQKggmjddJ0IWglRwKlgac6LNYsIHZAeaxoaEMl0KxkHSvGBUTq4GyrzAsBj9fdGQqTWQ+mbSUmgr2e9kfif14yhW2qZrFEMLKCTQ91YYAjxqB3c4YpREENDCFXc/BXTPlGEgukwZ0pwZyPPk1qx4J4WnJuTfPliWkcW7aF9dIRcdIbK6ApVUBVR9Iie0St6s56sF+vd+piMZqzpzi76A+vzB7qQnGQ=</latexit>

Lint = 228± 10µb�1
J
H
E
P
0
6
(
2
0
2
3
)
1
4
6

3000 3500 4000
]2c [MeV/-µ+µ

m

10

210

310

410

510)
2 c

C
an

d
id

at
es

 /
 (

5
 M

eV
/

Data
Fit

ψJ/

(2S)ψ

Background

LHCb
 = 5.02 TeVNNsPbPb 

 < 4.5y*2.0 < 

Figure 2. Dimuon mass distribution for signal candidates in the rapidity range 2.0 < y∗ < 4.5.
The data are overlaid with the result of the fit.

nucleus. The feed-down contribution to J/ψ production also has greater transverse momen-
tum than the coherent production to balance the other products from the ψ(2S) decay.
The ln(p∗2

T ) shapes of coherent, incoherent and ψ(2S) feed-down components are taken
from STARlight simulation, while the normalisation of these components are left free
in the fit. The nonresonant background consists mostly of the γγ → µ+µ− process with
a slightly lower transverse momentum of the dimuon system than coherent charmonium
production. The distribution also contains a small contribution from the random pairing
of uncorrelated muons produced in the hadronic interactions during peripheral or central
lead-lead collisions, signified by a large transverse momentum of the dimuon system. The
STARlight simulation gives a precise description of ln(p∗2

T ) spectrum of the γγ → µ+µ−

process, but not of the background from hadronic interactions. Instead, a data-driven
method is chosen to model the nonresonant background by taking the dimuon candidates
in the mass range 3.2 < mµ+µ− < 3.6GeV/c2 outside charmonium mass windows. In this
way, the model includes the γγ → µ+µ− process and the QCD background together, and
gives an unbiased modelling of the ln(p∗2

T ) spectrum. The yields of the nonresonant back-
ground are determined as the integral of the nonresonant component from the dimuon mass
fit separately in the J/ψ and ψ(2S) mass windows, and are fixed in the ln(p∗2

T ) fits.
Figure 3 shows the ln(p∗2

T ) distributions of selected J/ψ and ψ(2S) candidates in the
rapidity interval 2 < y∗ < 4.5. Fits to the ln(p∗2

T ) distributions are performed in each y∗

interval to extract the corresponding J/ψ and ψ(2S) yields, as reported in table 1. The
coherent yield of J/ψ and ψ(2S) production for each p∗

T interval is calculated by subtracting
the background components from the measured yield for that interval as reported in tables 2
and 3. The contributions from background components are determined by an overall fit to
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6 Results and discussion

The integrated cross-sections of coherent J/ and  (2S) production in PbPb collisions
are measured in the rapidity region 2.0 < y⇤ < 4.5 as

�coh
J/ = 5.965 ± 0.059 ± 0.232 ± 0.262 mb ,

�coh
 (2S) = 0.923 ± 0.086 ± 0.028 ± 0.040 mb ,

where the first listed uncertainty is statistical, the second is systematic and the third is
due to the luminosity determination. The ratio of the coherent  (2S) to J/ production
cross-sections is measured to be

�coh
 (2S)/�

coh
J/ = 0.155 ± 0.014 ± 0.003 ,

where the first uncertainty is statistical and the second is systematic. The luminosity
uncertainty cancels in the ratio measurement.

The measured di↵erential cross-sections as a function of y⇤ and p⇤T for coherent J/ 
and  (2S) are shown in Figs. 4 and 5, respectively. The cross-section ratio of coherent
 (2S) to J/ production as a function of rapidity is shown in Fig. 6. The numerical values
of the results are reported in Tables 5 – 9 in Appendix A. These results are compared to
several theoretical predictions in Figs. 4, 5 and 6 which can be grouped into models based
on perturbative-QCD (pQCD) [8, 22] and colour-glass-condensate (CGC) [6, 7, 23–28]
calculations.

The models provided by Guzey et al. [8, 22] are based on pQCD calculations under
the leading-logarithm approximation. The exclusive J/ photo-production cross-section
on a proton target is calculated at leading order. The final cross-section is calculated
with the weak and strong leading twist nuclear shadowing (LTA) models (LTA W and
LTA S, respectively) [29], together with the EPS09 [30] and EPPS16 [31, 32] nuclear
parton distribution functions. These models are compatible with the data, with excellent
agreement at high rapidity and a slight trend of underestimation at low rapidity for both
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Figure 4: Di↵erential cross-section as a function y⇤ for coherent (left) J/ and (right)  (2S)
production, compared to theoretical predictions. These models are grouped as (red lines)

perturbative-QCD calculations and (blue lines) colour-glass-condensate models.
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Coherent photoproduction in PbPb: ψ(2S)/J/ψ
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Figure 6. Differential cross-section ratio of ψ(2S) to J/ψ coherent photoproduction as a function
of y∗, compared to theoretical predictions.

Two sets of calculations using leading-order perturbative QCD (LO pQCD) are pro-
vided by Guzey, Kryshen, Strikman and Zhalov [12, 26] (GKSZ) for both J/ψ and ψ(2S)
coherent photoproduction. One uses the leading twist approximation (LTA) [27] to model
the nuclear shadowing effect in the initial state. The shaded area labelled “LTA” in fig-
ure 4 corresponds to the uncertainties on the nuclear shadowing determined in ref. [27].
The other uses EPS09 nuclear parton distribution functions (nPDFs) [28] for the nuclear
shadowing, with an error band labelled “nPDF unce.” under “EPS09” in figure 4 presenting
the uncertainties of the nuclear modification. Note that the two LO pQCD calculations
carry ad hoc normalisation factors of the cross-section determined using high-energy HERA
data [12, 29]. Both of them predict well the shapes of the data for both J/ψ and ψ(2S)
production as a function of y∗ in figure 4. A slightly larger (smaller) p∗

T is predicted for J/ψ
(ψ(2S)) production than the data in figure 5. An underestimation of about 15% of the nor-
malisation can be seen for both J/ψ and ψ(2S) production, but the ratio is well modelled
in figure 6. The large nPDF uncertainties in figure 4 indicate that coherent charmonium
photoproduction in heavy ion collisions is very sensitive to the nuclear modification factors,
especially to the modelling of the gluon shadowing, used in the LO pQCD calculations [12].

The next-to-leading-order (NLO) pQCD calculation using the most recent EPPS21
NLO nPDFs [30] is provided by Flett, Eskola, Guzey, Löytäinen and Paukkunen [31]
(FEGLP), and is only available for J/ψ production as shown in the left plot of figure 4. This
is the first pQCD calculation without using ad hoc normalisation factors of the cross-section
compared to previous LO calculations. The predicted central value is about 15 − 20%
lower than the data, which is calculated based on a factorization/renormalisation scale,
µ = 0.76mJ/ψ = 2.37GeV, tuned using previous ALICE [8, 9, 32, 33], LHCb [7] and
CMS [6] data. The substantial shaded area labelled “scale variation” corresponds to a
variation of µ from mJ/ψ /2 to mJ/ψ , indicating that the cross-section is extremely sensitive
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photoproduction, compared to theoretical predictions.
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Figure 5. Differential cross-section as a function of p∗
T within the rapidity range 2 < y∗ < 4.5 for

coherent (left) J/ψ and (right) ψ(2S) photoproduction compared to theoretical predictions.

where the first uncertainty is statistical and the second is systematic. The luminosity
uncertainty cancels in the ratio measurement.

The measured differential cross-sections for coherent J/ψ and ψ(2S) photoproduction
as functions of y∗ and p∗

T are shown in figures 4 and 5, respectively. The cross-section ratio
of coherent photoproduction between ψ(2S) and J/ψ as a function of rapidity is shown
in figure 6. The data are shown as black points with black error bars for the statistical
uncertainties, red boxes show the systematic uncertainties and the fully correlated uncer-
tainty due to integrated luminosity is labelled separately. In the same figures, the results
are compared to several theoretical predictions. The numerical values of the results are
reported in tables 5–9 in appendix A.

The STARlight prediction is based on the concept of vector meson dominance with
parameters tuned according to previous UPC data [16]. As shown in figures 4 and 5, it
gives a good description of the decreasing slope as a function of y∗ and the shape as a
function of p∗

T, but the overall predicted normalisation is about 20% and 50% higher for
J/ψ and ψ(2S) production, respectively. The ratio between ψ(2S) and J/ψ production in
figure 6 is also well modelled within data uncertainties.
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7 SMOG2 gas feed system

The SMOG apparatus is equipped with a gas feed system, shown in Fig. 2, which allows to
injects gas into the VELO vessel, Fig. 5. This system has only one feed line (used for di↵erent
noble gases), and cannot provide accurate determination of the injected gas flow rate Q.

For SMOG2 a new GFS, schematically shown in Fig. 36, has been designed. This system
includes an additional feed line directly into the cell center via a capillary, Fig. 29. The amount
of gas injected can be accurately measured in order to precisely compute the target densities
from the cell geometry and temperature.

Beyond the constraints requested by LHC and LHCb, the scheme shown in Fig. 36 is a well
established system, operated by the proponents in previous experiments [32, 33].

7.1 Overview

The system consists of four assembly groups, Fig. 36.

Figure 36: The four assembly groups of the SMOG2 Gas Feed System: (i) GFS Main Table, (ii) Gas
Supply with reservoirs, (iii) Pumping Station (PS) for the GFS, and (iv) Feed Lines. The pressure gauges
are labelled AG1 (Absolute Gauge 1), AG2 (Absolute Gauge 2). The two dosing valves are labelled
DVS (Dosing Valve for Stable pressure in the injection volume) and DVC (Dosing Valve for setting the
Conductance). The Feeding Connections include the feeding into the VELO vessel and into the storage
cell. The corresponding valves are labelled CV (Cell Valve), VV (VELO Valve) and SV (Safety Valve). A
Full Range Gauge (FRG) monitors the pressure upstream of the last valves for feeding into the vessel
(VV) and into the Cell (VC). A RGA with restriction and PS will be employed to analyze the composition
of the injected gas (see Sect. 6.4).

(i) GFS Main Table: Table which hosts the main components for the injection of calibrated
gas flow (volumes, gauges, and electro–pneumatic valves), to be located on the balcony at
the P8 cavern;

37

Gas Feed System

Openable cell

34

It is the only object into 
the LHC primary 

vacuum

SMOG2

inject gas: He, Ne, Ar, and H2, D2

RUN3

Collider mode

! = 13 TeV

!%% = 8.2 TeV

!%% = 5 TeV

Fixed-target mode

!%% = 72 GeV

!%% = 115 GeV

6L.L. Pappalardo  - LHCspin kick-off meeting  - Ferrara  - July 15-16  2019

Types of collisions at LHCb

!%% = 115 GeV

protons                                     protons, deuterons

SM
OG, SM

OG2
PGT

-2.78<yCM<0.2

Fixed target at LHCb

16



Unique kinematical region

At the LHC fixed target pp, pp , pA, Pb-p, Pb-p  or Pb-A collisions, one has unique 
kinematic conditions at the poorly explored energy of √s ~ 100 GeV

7
In addition the exotic region at x>1 can be accessed (Fermi motion) creating a bridge between QCD and nuclear physics
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7 SMOG2 gas feed system

The SMOG apparatus is equipped with a gas feed system, shown in Fig. 2, which allows to
injects gas into the VELO vessel, Fig. 5. This system has only one feed line (used for di↵erent
noble gases), and cannot provide accurate determination of the injected gas flow rate Q.

For SMOG2 a new GFS, schematically shown in Fig. 36, has been designed. This system
includes an additional feed line directly into the cell center via a capillary, Fig. 29. The amount
of gas injected can be accurately measured in order to precisely compute the target densities
from the cell geometry and temperature.

Beyond the constraints requested by LHC and LHCb, the scheme shown in Fig. 36 is a well
established system, operated by the proponents in previous experiments [32, 33].

7.1 Overview

The system consists of four assembly groups, Fig. 36.

Figure 36: The four assembly groups of the SMOG2 Gas Feed System: (i) GFS Main Table, (ii) Gas
Supply with reservoirs, (iii) Pumping Station (PS) for the GFS, and (iv) Feed Lines. The pressure gauges
are labelled AG1 (Absolute Gauge 1), AG2 (Absolute Gauge 2). The two dosing valves are labelled
DVS (Dosing Valve for Stable pressure in the injection volume) and DVC (Dosing Valve for setting the
Conductance). The Feeding Connections include the feeding into the VELO vessel and into the storage
cell. The corresponding valves are labelled CV (Cell Valve), VV (VELO Valve) and SV (Safety Valve). A
Full Range Gauge (FRG) monitors the pressure upstream of the last valves for feeding into the vessel
(VV) and into the Cell (VC). A RGA with restriction and PS will be employed to analyze the composition
of the injected gas (see Sect. 6.4).

(i) GFS Main Table: Table which hosts the main components for the injection of calibrated
gas flow (volumes, gauges, and electro–pneumatic valves), to be located on the balcony at
the P8 cavern;
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Fig. 59: Comparison of PDF4LHC15 with the profiled sets with HL-LHC data in scenarios A and C (see text).
The gluon, down quark, up anti-quark, and total strangeness at Q = 10 GeV are shown, normalized to the central
value of the baseline.

large factor of 5 for the 13 TeV measurements is assumed, correcting for the fact that these are based in
the initial datasets which generally have larger systematic errors in comparison to the 8 TeV case. The
name of the corresponding LHAPDF grid is also indicated in each case.

Table 32: The three scenarios for the systematic uncertainties of the HL-LHC pseudo-data assumed in the present
exercise. These scenarios, ranging from conservative to optimistic, differ among them in the reduction factor fred,
eq. (33), applied to the systematic errors of the reference 8 TeV or 13 TeV measurements. The name of the
corresponding LHAPDF grid is also indicated in each case.

Scenario fred (8 TeV) fred (13 TeV) LHAPDF set Comments

A 0.4 0.2 PDF4LHC_nnlo_hllhc_scen3 Optimistic

B 0.7 0.36 PDF4LHC_nnlo_hllhc_scen2 Intermediate

C 1 0.5 PDF4LHC_nnlo_hllhc_scen1 Conservative

Then in Fig. 59 a comparison of the baseline PDF4LHC15 set is presented with the profiled sets
based on HL-LHC pseudo-data from scenarios A and C in Table 32. Specifically, the gluon, down quark,
up anti-quark, and total strangeness at Q = 10 GeV are shown, normalized to the central value of the
baseline. The predictions of scenarios A and C (optimistic and conservative respectively) are observed
to be reasonably similar. This demonstrates that the results are relatively robust against the projections
of how experimental errors will be reduced in HL-LHC measurements. A marked reduction of PDF
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The SMOG apparatus is equipped with a gas feed system, shown in Fig. 2, which allows to
injects gas into the VELO vessel, Fig. 5. This system has only one feed line (used for di↵erent
noble gases), and cannot provide accurate determination of the injected gas flow rate Q.

For SMOG2 a new GFS, schematically shown in Fig. 36, has been designed. This system
includes an additional feed line directly into the cell center via a capillary, Fig. 29. The amount
of gas injected can be accurately measured in order to precisely compute the target densities
from the cell geometry and temperature.

Beyond the constraints requested by LHC and LHCb, the scheme shown in Fig. 36 is a well
established system, operated by the proponents in previous experiments [32, 33].
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The system consists of four assembly groups, Fig. 36.

Figure 36: The four assembly groups of the SMOG2 Gas Feed System: (i) GFS Main Table, (ii) Gas
Supply with reservoirs, (iii) Pumping Station (PS) for the GFS, and (iv) Feed Lines. The pressure gauges
are labelled AG1 (Absolute Gauge 1), AG2 (Absolute Gauge 2). The two dosing valves are labelled
DVS (Dosing Valve for Stable pressure in the injection volume) and DVC (Dosing Valve for setting the
Conductance). The Feeding Connections include the feeding into the VELO vessel and into the storage
cell. The corresponding valves are labelled CV (Cell Valve), VV (VELO Valve) and SV (Safety Valve). A
Full Range Gauge (FRG) monitors the pressure upstream of the last valves for feeding into the vessel
(VV) and into the Cell (VC). A RGA with restriction and PS will be employed to analyze the composition
of the injected gas (see Sect. 6.4).
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gas flow (volumes, gauges, and electro–pneumatic valves), to be located on the balcony at
the P8 cavern;
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Gas Feed System

Openable cell
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It is the only object into 
the LHC primary 

vacuum

SMOG2

inject gas: He, Ne, Ar, and H2, D2

RUN3

Collider mode

! = 13 TeV

!%% = 8.2 TeV

!%% = 5 TeV

Fixed-target mode

!%% = 72 GeV

!%% = 115 GeV
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Types of collisions at LHCb
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-2.78<yCM<0.2

Fixed target at LHCb

Kara Mattioli (LLR/CNRS) Synergies between the LHC and the EIC Workshop

SMOG2 - the SMOG upgrade for Run 3
• SMOG2 is a dedicated cell (20cm long, 1cm diameter) 

for gas injection installed just before the LHCb VELO
• Smaller cell size allows for increased gas densities 

and therefore higher luminosities with respect to 
SMOG, with a luminosity uncertainty of 1-2%

• Equipped with a sophisticated Gas Feed System that 
allows the injection of more gases: H2, D2, Ar, Kr, 
Xe, He, Ne, N2, O2 all possible!

• Can run in parallel with collider mode pp physics 
data taking at LHCb
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LHCb-PUB-2018-015 LHCb TDR 20

pp

pAr (SMOG2)

LHCb-FIGURE-2022-002 LHCb-FIGURE-2023-001

Kara Mattioli (LLR/CNRS) Synergies between the LHC and the EIC Workshop

SMOG2 performance in Run 3 
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• Excellent  and J/ψ yields from just 
18 minutes of pAr data-taking in 
2022!

D0

LHCb-FIGURE-2023-008

• With 50 pb-1 of pAr data, we expect   
> 15 million J/ψ candidates!

18 minutes of data taking
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From 2015 Long Range Plan for Nuclear Science 7

x = 0.25 x = 0.09
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Summary

• Exclusive single-quarkonium production in pp: 

• unique potential to constrain GPDs at very low xB, down to 10-6

• probe universality


• Exclusive single-quarkonium production in PbPb:

• access to nuclear GPDs

• potential to probe saturation effects


• Fixed target: potential to constrain GPDs in the poorly constrained high xB region, 


