

# Readiness Report around ~2025-26

Update wrt Project Implementation Plan document 2018

### Key updates:

- Luminosity numbers, covering beam-dynamics, nanobeam studies and hardware, and positron production - at all energies
  - Risk reduction (wrt performance), bumps, redundancies
- Energy/power/sustainability: 380 well underway, 3 TeV to be done, L-band klystrons
- Sustainability issues, more work on running/energy models, carbon (construction/operation/disassembly)
- X-band progress for CLIC, smaller machines, industry availability, including RF network
- RF design optimization/development including injectors, R&D for higher energies, gradient (cool/HTS/etc.), power, beam parameters - links to plasma (if it can be made)
- Cost update. Changes wrt to 2018, plus impact of going green.
- Physics "update", use for "diversity" types of physics, LDM etc.
- Low cost/power klystron version, with fewer klystrons, 250 GeV

# Status reports and studies

Two formal submissions to the ESPPU 2018



3-volume CDR 2012

Updated Staging Baseline 2016







4 CERN Yellow Reports 2018







Details about the accelerator, detector R&D, physics studies for Higgs/top and BSM

## Available at:

clic.cern/european-strategy

# Several LoIs have been submitted on behalf of CLIC and CLICdp to the Snowmass process:

- The CLIC accelerator study: <u>Link</u>
- Beam-dynamics focused on very high energies: <u>Link</u>
- The physics potential: Link
- The detector: Link

## Snowmass white paper:

https://arxiv.org/abs/2203.09186

Broadly speaking: "Updated accelerator part of 2018 Summary Report"

### The CLIC project

O. Brunner<sup>a</sup>, P. N. Burrows<sup>b</sup>, S. Calatroni<sup>a</sup>, N. Catalan Lasheras<sup>a</sup>, R. Corsini<sup>a</sup>, G. D'Auria<sup>c</sup>, S. Doebert<sup>a</sup>, A. Faus-Golfe<sup>d</sup>, A. Grudiev<sup>a</sup>, A. Latina<sup>a</sup>, T. Lefevre<sup>a</sup>, G. Mcmonagle<sup>a</sup>, J. Osborne<sup>a</sup>, Y. Papaphilippou<sup>a</sup>, A. Robson<sup>c</sup>, C. Rossi<sup>a</sup>, R. Ruber<sup>d</sup>, D. Schulte<sup>a</sup>, S. Stapnes<sup>a</sup>; I. Syratchev<sup>a</sup>, W. Wienesch<sup>a</sup>

"CERN, Geneva, Switzerland, <sup>b</sup>John Adams Institute, University of Oxford, United Kingdom, "Elettra Sincrotrone Trieste, Italy, "JLClab, Orasy, France, "University of Glasgow, United Kingdom, "Uppsala University, Sweden

April 4, 202

#### Abstra

The Compact Linear Collider (CLIC) is a multi-TeV high-luminosity linear e<sup>+</sup>e<sup>-</sup> collider under development by the CLIC accelerator collaboration, hosted by CERN. The CLIC accelerator has been optimised for three energy stages at centre-of-mass energies 380 GeV, 1.5 TeV and 3 TeV [21]. CLIC uses a novel two-beam acceleration technique. With normal-conducting accelerating structures operating in the range of 70 MV/m to 100 MV/m.

technique, with normal-conducting accelerating environment operating in the range of 70M/V; no 100M/V; no. The report describes recent advicements in accelerated online, technology development, system tests and beam tests. Large-scale CLIC-specific beam tests have taken place, for example, at the CLIC Test Facility CTF3 at CRIS [10], at the FACET field; with CRIS [10], and at the FERRI field; with Test and the FERRI field; with Test at KRIS, [10], at the FACET field; with SACE [13] and at the FERRI field; with the CRIS [10], and the FERRI field; with the CRIS [10], and the FERRI field; with the CRIS [10] and the CRIS [10] and the FERRI field; with the CRIS [10] and the CRIS [10]

seen carried out by the CLIC detector and physics (CLICdp) collaboration. CLIC provides excellent sensitivity on Beyond Standard Model physics, through direct searches and via a broad set of precision measurements outstandard Model processes, particularly in the Higgs and top-quark sectors. The physics potential at the three nergy stages has been explored in detail [2, 3, 17] and presented in submissions to the European Strategyplotate process.

> Submitted to the Proceedings of the US Community Stud on the Future of Particle Physics (Snowmass 2021)



Chapter New studies and results

Intro

**Design and Performance** 

Updated lum and energies

System overview

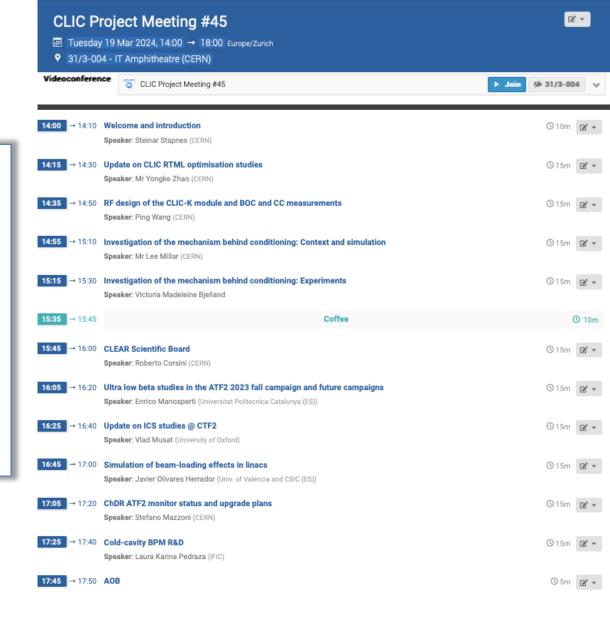
Updated DR RF, RTML, injector changes, positron production, DB klystrons and consequences

Technologies

include X-band readiness, use in other facilities and projects include use of technologes in other projects (e.g. HiLumi)

Implementation

Updated cost, power and LCA, check el distirbution for 2-3 TeV


More about personnel for construction and operation

Risks and TRLs

Next steps and longer term facility development opportunities (split in two chapters)

Towards a TDR - need to come from/be summarized from sections above Include synergies with other project (e.g other LCs) and scientific diversity

Include personnel, CE and site readiness,



CLIC / Stapnes