



# Cold cavity BPM R&D for the ILC Main Linac

Laura Karina Pedraza, Nuria Fuster, Daniel Esperante, Benito Gimeno

Clic Project Meeting #45, 19/03/2024





# Cold cavity BPM R&D for the ILC Main Linac

Clic Project Meeting #45, 19/03/2024

### Introduction

- I. Project definition and objectives
- II. Cavity BPM theory
  - A) Pillbox cBPM
  - B) Re-entrant cBPM
- III. Ongoing work
  - A) CST Simulations
  - B) Parametric studies
  - C) BI-RME 3D
- IV. Future plans



### Introduction

### Development of a re-entrant cBPM for the ILC Main Linac

Measurement requirements:

Spatial resolution < 1 µm Temporal resolution < 369 ns Dynamic range: 0-35 nm (offset) and 0.1-3.2 nC (bunch charge)

### Mechanical requirements:

Mechanical fit of the BPM and the SC quadrupole magnet Cryogenic and UV conditions have to be met



Project in collaboration with KEK and CIEMAT: development of the cryostat for BPM and SCQ

The designed BPM will initially be tested at ATF (Accelerator Test Facility) and at STF (Superconducting RF Test Facility) at KEK where:

- Temporal resolution has to be matched in order to perform bunch to bunch measurements at STF specially

| Beam<br>parameters    | ATF2 | STF  | ILC |
|-----------------------|------|------|-----|
| Beam energy<br>(GeV)  | 1.3  | 0.5  | 250 |
| Bunch charge<br>(nC)  | 1.6  | 0.6  | 3.2 |
| Bunch spacing<br>(ns) | 150  | 6.15 | 369 |
| Bunch length<br>(mm)  | 7    | 3    | 0.3 |

M. Wendt, Cold Cavity BPM R&D for the ILC, FermiLab Tomohiro Yamada, Test cryostat for BPM-SCQ, KEK



# I. Project definition and objectives

# I. Project definition and objectives

- Modify an existing cBPM design to decrease the decay time τ
- ★ Modifications of the Claire Simone design to improve the temporal resolution  $\tau$  (< 6 ns)  $\rightarrow$  perform bunch to bunch measurements at STF
- Mechanical attachment and alignment between the BPM and the SC quadrupole magnet
- Evaluate possibility of extracting both monopole and dipole signal from the same output
- Buy a the cBPM from Claire Simone (Saclay)
- Understand the cBPM behavior
- Develop electronics suited for this model
- Test the cavity and the electronics without beam at the RF laboratory: preparation of the set-up
- Test the cavity and the electronics with beam at ATF



C. Simon, N. Rouvière, N. Baboi, Performance of a reentrant cavity beam position monitor, DSM, CNRS, DESY H. Hayano, Status of Re-entrant cavity-type Cold BPM R&D for ILC Main Linac, KEK



# Cavity BPM Theory

A. Pillbox cavity BPMB. Re-entrant cavity BPM

# II. Cavity BPM Theory

### A) Pillbox cavity BPM

→ Working principle

EM modes can resonate inside a PEC cavity. Their energy oscillates between pure E and pure M.

Short bunches can excite several resonating modes in a cavity. The beam couples with modes that have longitudinal E-field components: the TM modes.

Two particular modes are of interest:

Monopole mode  $TM_{010}$ 

Dipole mode TM<sub>110</sub>



Figure: Transverse view of the modes



Figure: Representation of the E-fields induced in the cavity

The monopole mode is always excited by the beam since its maximum amplitude is on the beam axis.

An offset beam induces the dipole mode with:

```
V_{TM110} \propto I_{beam} \times \delta x
```

R. Lorenz, Cavity Beam Position Monitors, DESY M. Viti, Resonant Cavities and Position Monitor, DESY

#### R. Lorenz, Cavity Beam Position Monitors, DESY M. Gustafsson, Electrodynamics Lectures EITN80, Lund University

Used to evaluate the effect of the beam on the cavity and depends only on the cavity shape.

#### Cavity BPM Theory 11.

### A) Pillbox cavity BPM

### Resonant modes

Field  $E_z$ :



where  $C_{mnp}$  is the amplitude and  $\omega_{mnp} = 2\pi f_{mnp}$  is the angular frequency of mode TM<sub>mnp</sub>.

Resonance frequency of mode TM<sub>mnp</sub> is: 
$$f_{mnp} = \frac{c_0 k_{mnp}}{2\pi} \quad \text{where} \quad k_{mnp} = \sqrt{\left(\frac{j_{mn}}{a}\right)^2 + \left(\frac{p\pi}{L}\right)^2} \qquad \Rightarrow \qquad f_{010} = \frac{c_{001}}{2\pi a} \Rightarrow \qquad f_{110} = \frac{c_0 j_{11}}{2\pi a}$$

where m, n, p are the node numbers,  $k_{mnp}$  is the wavenumber, a is the cavity radius, L is the length and  $j_{mn}$  is the nth zero of the mth Bessel function

• (**R/Q**): is defined as 
$$\left[\frac{R}{Q_0}\right]_{mnp} = \frac{\int \mathbf{E} d\mathbf{s}^2}{P_{wall}} \frac{P_{wall}}{\omega_{mnp}W_s} = \frac{V_{mnp}^2}{\omega_{mnp}W_s}$$

CORPUSCULAR

Coloi

# • Fundamental theorem of beam loading:

Cavity BPM Theory

A) Pillbox cavity BPM

||.

"the voltage induced by a charge traveling through a cavity is twice the effective voltage "seen" by the charge itself"

Voltage of a mode in the cavity excited by the beam:

• Output signal V<sub>out</sub> :

Stored energy in the cavity:

By definition of Qext, the output power is:

 $W_{s} = \frac{V_{b \to m}^{2}}{\omega_{mnp}(R/Q)_{mnp}} = q^{2} \frac{\omega_{mnp}}{4} \left(\frac{R}{Q}\right)_{mnp} \qquad \text{since} \quad \left(\frac{R}{Q}\right)_{mnp} = \frac{V_{mnp}^{2}}{\omega_{mnp}W_{s}}$ 

$$P_{out} = \frac{\omega_{mnp}W_s}{Q_{ext}} = \frac{q^2\omega_{mnp}^2}{4}\frac{1}{Q_{ext}}\left(\frac{R}{Q}\right)_{mnp} \qquad \text{since} \quad Q_{ext} = \frac{\omega_{mnp}W_s}{P_{out}}$$

Output voltage (with impedance Z) is:

$$V_{out,0} = \sqrt{ZP_{out}} = \frac{q\omega_{mnp}}{2} \sqrt{\frac{Z}{Q_{ext}} \left(\frac{R}{Q}\right)_{mnp}}$$

 $V_{b\to m} = q \, \frac{\omega_{mnp}}{2}$ 



## II. Cavity BPM Theory

### A) Pillbox cavity BPM

• R/Q for each mode:

Cálculo de 
$$\left(\frac{R}{Q}\right)_{mnp} = \frac{V_{mnp}^{2}}{\omega_{mnp}W_{s}}$$
 using  $V_{mn0}(\delta x) = \int_{0}^{L} E_{z,mn0}(r,\phi) dz$  and  $W_{s,mn0} = \int_{V}^{1} \frac{1}{2}\varepsilon_{0} \left|E_{z,mn0}\right|^{2} dV$   
Dipole mode:  $\left[\frac{R}{Q}\right]_{110} \propto J_{1}\left(\frac{j_{11}r}{a}\right)^{2} \cos^{2}\phi \simeq \left(\frac{j_{11}\delta x}{a}\right)^{2}$  Monopole mode:  $\left[\frac{R}{Q}\right]_{010} \propto J_{0}\left(\frac{j_{01}r}{a}\right)^{2} \simeq \text{constante}$   
 $\Rightarrow [R/Q]_{110} \propto (\delta x)^{2} \text{ for small offsets } \delta x$   $\Rightarrow [R/Q]_{010} \propto \text{constant}$   
As  $V_{out} \propto \sqrt{\left(\frac{R}{Q}\right)_{mnp}}$   
then  $V_{out} \propto (\delta x)$  for the dipole  
and  $V_{out} \simeq \text{constant}$  for the monopole  
 $\int_{0}^{0} \frac{1}{2} \frac{1}{2}$ 

R. Lorenz, Cavity Beam Position Monitors, DESY M. Viti, Resonant Cavities as Beam Position Monitor, DESY 4.0

(FI(

INSTITUT DE FÍSICA C o r p u s c u l a r

 $\square$ 

### II. Cavity BPM Theory A) Pillbox cavity BPM

### → Output signal

#### on the time domain:

The output signal oscillates at the dipole mode resonance frequency and decays exponentially with decay constant  $\tau$ :

 $V_{out}(t) = V_{out,0} \sin(\omega_{mnp}t + \varphi) \exp(-t/\tau)$  $V_{out,0} \propto \delta x$  $\exp(-t/\tau)$ where  $\tau = 2Q_L/\omega_{mnp}$ Need to find a balance between time resolution and spacial

resolution when choosing Q<sub>L</sub>

### \* on the frequency domain:

Contamination of the monopole signal at the dipole mode frequency

HODINA BODINA HILD S1  $f_{110}$  S2  $f_{110}$  FREQUENCY

Figure: Common-mode contamination

When recovering the monopole signal, there is the need to suppress the monopole mode.

However the monopole signal has to be recovered in another way since it is needed for the intensity normalization (need of a reference cBPM)

### \* other considerations:

- Aperture of the cBPM has to be similar to the aperture of the beam pipe



# II. Cavity BPM Theory

### B) Re-entrant cavity BPM

• Geometry and modes:



Saclay: Simone - Re-entrant cavity BPM for DESY



Resonance frequencies:  $f_{010} = 1.25 \text{ GHz}$  and  $f_{110} = 1.72 \text{ GHz}$ 

R. Bossart, High precision BPM using a re-entrant coaxial cavity, CERN

C. Simon, N. Louvière, N. Baboi, Performance of a reentrant cavity beam position monitor, DSM, CNRS, DESY



# 

# Ongoing work

A.CST SimulationsB.Parametric studiesC.BI-RME 3D

## III. Ongoing work

### A) CST Simulations

• Eigenmode study

Evaluate the E and M fields distributions, coupling to antennas and the influence of geometrical parameters on the resonant frequency and quality factor  $Q_{\rm L}$ 



#### • Wakefield study

Evaluate the E and M fields under the presence of a beam and their response to different offsets



Beam offset:  $\delta x = 1.0 \text{ mm}$ 



CST Studio Suite, Charged Particle Simulation - Workflow & Solver Overview, 3DExperience

### III. Ongoing work A) CST simulations





Fig. 8: Design of the new cavity BPM

Fig. 9: Design of the new feedthrough

| Mode                        | Frequency<br>ω <sub>mnp</sub> (GHz) | Loaded Q | Decay time<br>(ns) | R/Q at 5 mm<br>(Ω) |  |  |
|-----------------------------|-------------------------------------|----------|--------------------|--------------------|--|--|
| Bibliography                |                                     |          |                    |                    |  |  |
| Mode 1<br>TM <sub>010</sub> | 1.25                                | 24       | 6.11               | 13                 |  |  |
| Mode 2<br>TM <sub>110</sub> | 1.72                                | 51.4     | 9.51               | 0.25               |  |  |
| CST Simulations             |                                     |          |                    |                    |  |  |
| Mode 1<br>TM <sub>010</sub> | 1.272                               | 15.7     | 3.97               | 24.5               |  |  |
| Mode 2<br>TM <sub>110</sub> | 1.728                               | 57.9     | 11.07              | 0.46               |  |  |



C. Simon, WP11 (Beam diagnosis) The re-entrant BPM, CEA, Saclay, France



### III. Ongoing work B) Parametric studies on CST







b

# III. Ongoing work

### B) Parametric studies on CST





Preliminary conclusions:

Higher influence on  $Q_{L (dipole)}$  (and  $\tau$ ):

- $\searrow$  when  $l \nearrow$  (cavity length)
- $\nearrow$  when  $d_a \nearrow$  (antenna distance)
- $\nearrow$  when  $h_c \nearrow$  (thickness of seal)
- ¬ ¬ when a ↗ (radius of inner conductor) (but limited)

Higher influence on **R/Q** (dipole) (sensitivity):

- $\nearrow$  when  $r_3 \nearrow$  (cavity aperture)
- $\searrow$  when  $l \nearrow$  (cavity length)
- Parameters usually affect al variables at the same time. Need of careful selection.

### III. Ongoing work C) BI-RME 3D

### BI-RME 3D = Boundary Integral - Resonant Mode Expansion

n L



Hybrid method that uses CST field results for a closed resonant cavity and allows to evaluate the RF power extracted at the output ports from the cavity when excited by a beam

- For a given operation frequency, the numerical method yields:
- power consumed by the cavity  $P_c$  and power delivered to the waveguides (ports)  $P_w$
- output RF signal's amplitude and phase
- external and loaded quality factors

### Method:

- The EM fields within a cavity can be expressed as a superposition of the full set of solenoidal and irrotational modes.
- The expressions of the electric and magnetic fields existing in the cavity excited by the time-harmonic electric  $\vec{J}$  and magnetic  $\vec{M}$  current densities are:

$$\begin{split} \vec{E}(\vec{r}) &= \frac{\eta}{jk} \nabla \int_{V} g^{e}(\vec{r},\vec{r}') \,\nabla' \cdot \vec{J}(\vec{r}') \,dV' - jk\eta \int_{V} \vec{\mathbf{G}}^{\mathbf{A}}(\vec{r},\vec{r}') \cdot \vec{J}(\vec{r}') \,dV' - \\ &- \int_{S} \nabla \times \vec{\mathbf{G}}^{\mathbf{F}}(\vec{r},\vec{r}') \cdot \vec{M}(\vec{r}') \,dS' + \frac{1}{2} \,\vec{n} \times \vec{M} \\ \vec{H}(\vec{r}) &= \frac{1}{jk\eta} \nabla_{s} \int_{S} g^{m}(\vec{r},\vec{r}') \,\nabla' \cdot \vec{M}(\vec{r}') \,dS' - \frac{jk}{\eta} \int_{S} \vec{\mathbf{G}}^{\mathbf{F}}(\vec{r},\vec{r}') \cdot \vec{M}(\vec{r}') \,dS' + \\ &+ \int_{V} \nabla \times \vec{\mathbf{G}}^{\mathbf{A}}(\vec{r},\vec{r}') \cdot \vec{J}(\vec{r}') \,dV' \end{split}$$

for a set of scalars and tensors of Green functions under the Coulomb gauge



B. Gimeno, Wide-band full-wave electromagnetic modal analysis of the coupling between dark-matter axions and microwave resonators, AITANA Seminar 2024

# III. Ongoing work C) BI-RME 3D

A cavity BPM can be considered as a resonant cavity with 4 waveguide ports as outputs:



Cavity excited by the

beam

## Variable definition:

 $Z_0$  impedance of coaxial output

 $V_i$  voltage at port (i)

 $I_i = I_b^{(i)} - I_{ci}$  intensity at the cavity  $I_{ci} = V_i/Z_0$  intensity at the coaxial port

 $\begin{pmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \end{pmatrix} = \begin{pmatrix} Y_{11} & Y_{12} & Y_{13} & Y_{14} \\ Y_{21} & Y_{22} & Y_{23} & Y_{24} \\ Y_{31} & Y_{32} & Y_{33} & Y_{34} \\ Y_{41} & Y_{42} & Y_{43} & Y_{44} \end{pmatrix} \cdot \begin{pmatrix} V_1 \\ V_2 \\ V_3 \\ V_4 \end{pmatrix}$ Input admittance of the cavity

 $\kappa_m \simeq k_m \left(1 - \frac{1}{2O_m}\right) + j \frac{\kappa_m}{2O_m}$  to consider Ohmic losses

20



B. Gimeno, Wide-band full-wave electromagnetic modal analysis of the coupling between dark-matter axions and microwave resonators, AITANA Seminar 2024

 $Z_0$ 

 $I_{c1}$ 



# IV. Future plans

## III. Future plans



### New cBPM design

Crossed examination of parameters for a detailed optimization

Start developing cBPM design to fit

- measurement requirements: temporal resolution < 6.15 ns</li>
- mechanical requirements: mechanical fit with the SC quadrupole

Performance estimation with BI-RME 3D

### Saclay model

Acquire the cBPM model from C. Simone  $\rightarrow$  summer/fall 2024

Start developing the electronics readout to test with this model Possibility of collaboration with the RHUL / ELI + KEK (test their electronics)

Prepare set-up for cBPM at RF laboratory (IFIC)

### Measurements at ATF and STF

Possibility to perform measurements at the end of 2024, provided that we receive the cBPM from Saclay and have the read-out system ready

### Prepare setup and space that will be used at ATF







# Thank you for your attention

laura.pedraza@ific.uv.es