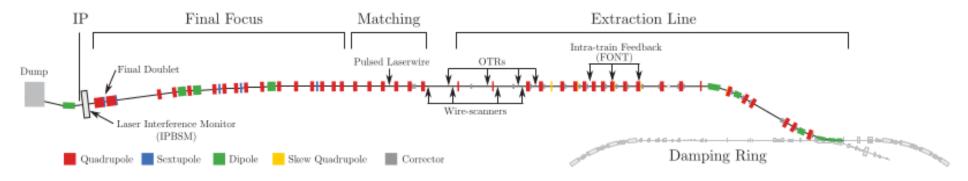
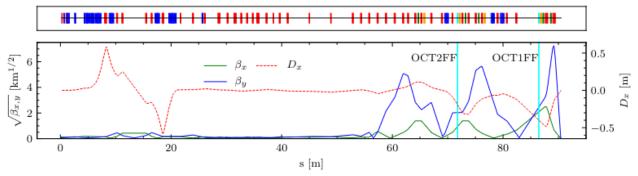


Ultra low β_y^* studies in the ATF2 2023 campaign and future campaigns


ENRICO MANOSPERTI, ANDRII PASTUSHENKO, ROGELIO TOMAS CLIC PROJECT MEETING 19/03/2024

Outline

- ATF2 purpose
- Ultra-low β_y^* studies
- Tuning method
- Optics measurements and matching
- Future campaigns
- Conclusions

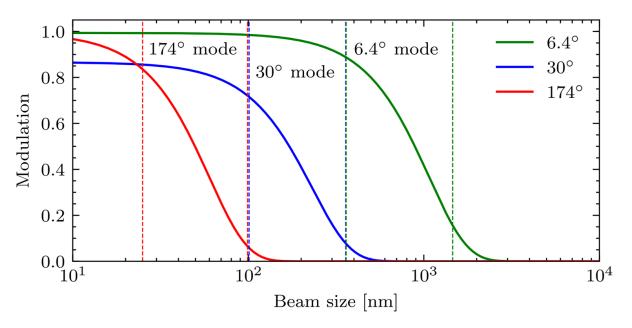

ATF2 purpose

- Project to build and operate a facility for the final focus system of future colliders.
- Feasibility studies on local chromaticity correction scheme.
- Focusing an electron beam to 40 nm vertical for ILC-like FFS optics and to 20 nm vertical for CLIC-like FFS optics.

Ultra low β_y^* studies

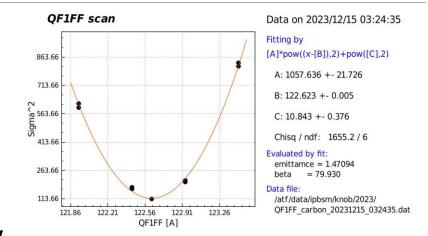
- Chromaticity as the CLIC BDS.
- Tuning performance increased by using $25\beta_x^*$
- For tuning procedure, a pair of octupoles was installed to cancel 3rd order aberrations.

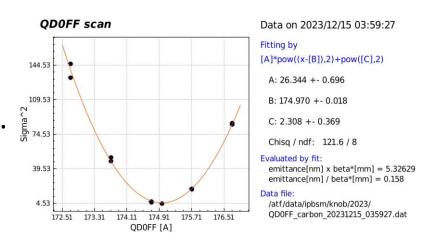
[A. Pastushenko et al, Tunability Study of the Ultra-Low β^* Optics at ATF2 with New Octupole Setup and Tuning Knobs, JACoW IPAC, 2021, 752–755. https://doi.org/10.18429/JACoW-IPAC2021-MOPAB231]


ATF: Nominal $10\beta_x^* \times \beta_y^*$	2 optics Ultra-low $\beta_x^* \times 0.25 \beta_y^*$	ILC	CLIC	CLIC
1.3		250	380	3000
12		0.035	0.008	0.003
1.2		5.0	2.55	0.2
0.008		0.2	0.3	0.3
40/0.1	4/0.025	13/0.4	8/0.07	4/0.12
10000	40000	10000	86000	50000
37	$27(20^{a})$	7.7	2.4	1.0
	Nominal $10\beta_x^* \times \beta_y^*$ 0.40/0.1 10000	$\begin{array}{ccc} 10\beta_x^* \times \beta_y^* & \beta_x^* \times 0.25\beta_y^* \\ & 1.3 \\ & 12 \\ & 1.2 \\ & 0.008 \\ 40/0.1 & 4/0.025 \\ 10000 & 40000 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

awith octupoles.

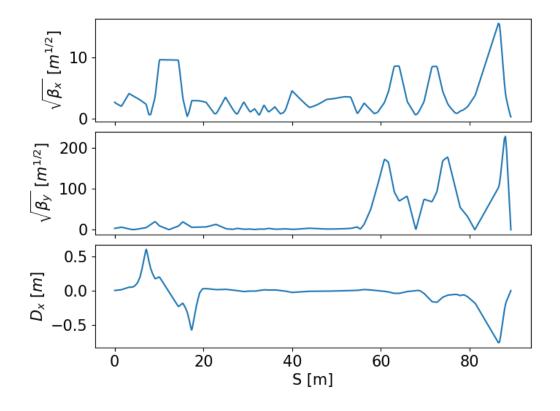
[Pastushenko, A. (2022). Optimization of CLIC Final Focus System at 380 GeV and implementation studies for Ultra-low β^* at ATF2. https://cds.cern.ch/record/2871709]


Tuning method


- 1. Orbit correction and dispersion measurements
- 2. Performing wire scan
- 3. Optics matching and measurement
- 4. Beam size with IPBSM

Optics measurement

- December operations (40x1) : $\sigma_y^* \approx 130 \text{ nm}$
- 2 dedicated shifts for ultra low studies in December 2023 with 25x0.25 optics
- First time after 4 years from the last ultra-low β_y^* studies.
- Uploaded the most recent ultra-low β_y^* optics.
- Perform orbit and dispersion corrections.



Optics matching

- Starting from the extraction line, matching the twiss at the IP.
- $\beta_{x,y}^*$ + phase advance matching.

	Start	Final	Target
β_x^* [mm]	79	85	100
β _y [μm]	76	29	25

Future campaigns

- Next studies possibly in April 2024.
- Ultra low β_y^* needs wire scan and optics matching several times to have the right optics in the machine.
- To measure the required beam size a stable performance of 174° mode IPBSM is needed.
 - Stabillity of the IPBSM necessary (even in nominal).
 - More time for tuning.

Conclusions

- New ultra-low β_v^* studies with 25x0.25 optics after march 2020.
- Achieved a vertical beta of 29 μ m (target 25 μ m).
- Beam size not measured.
- More time of ultra-low β_y^* studies for better measurements.

Thank you!