

Simulation of Beam-Loading effects in linacs

CLIC Project Meeting #45 19th of March 2024

Javier Olivares Herrador^{1,2}, Andrea Latina¹, Nuria Fuster-Martinez², Benito Gimeno², Daniel Esperante².

¹CERN, Meyrin, 1217, Switzerland
 ²Instituto de Física Corpuscular (IFIC), CSIC-University of Valencia. Calle Catedrático José Beltrán Martínez, 2, 46980
 Paterna (Valencia), Spain

Outline

- **PART I**: Introduction and BL power diffusive model
- **PART II**: Beam Loading simulations in RF-Track
 - Benchmark for CLIC AS and CLIC PETS
- **PART III:** Experimental results @ CLEAR facility
- **PART IV**: BL Compensation simulations
- PART V: Conclusions

I. Beam Cavity Interaction

- Beam excites EM modes, described by
 - Resonating frequency
 - Quality factor
 - Shunt impedance

$$Q = \omega_{\rm \tiny RF} \frac{\omega}{p_{\rm diss}}$$
$$r_e = \frac{G_{\rm eff}^2}{p_{\rm diss}} \left[\Omega/\mathrm{m}\right]$$

W

> Particle flying through a cavity and leaving an EM field behind it (excited mode).

- Ideally, cavities exhibit low Q_{HOM} and high Q_{FM}
- The TM₀₁ induced excitation lasts for a long time:
 - Long range effect

CSIC

Accumulated from bunch to bunch

Beam Loading Effect: Reduction of available accelerating gradient Due to beam – cavity interaction

[1] Chao A. *Physics of collective beam instabilities in high energy particle accelerators*. New York, US: John Wiley and Sons (1993).

I. Power-Diffusion PDE

• From Poynting Theorem: Gradient reduction PDE:

$$\begin{aligned} \mathsf{TW} \quad & -\frac{\partial G}{\partial t} = v_g \frac{\partial G}{\partial z} + \left(-\frac{v_g}{r/Q} \frac{\partial (r/Q)}{\partial z} + \frac{\omega}{Q} + \frac{\partial v_g}{\partial z} \right) \frac{G}{2} + \frac{\omega r \tilde{I}}{2Q} \end{aligned}$$

$$\begin{aligned} & \mathsf{Beam Loading term} \\ \mathsf{SW} \quad & -\frac{\partial G}{\partial t} = +\frac{\omega}{Q} \frac{G}{2} - \frac{\omega}{2Q} \frac{G^2_{\text{unloaded}}}{G} \left(1 - \exp \frac{\omega t}{2Q} \right) + \frac{\omega r \tilde{I}}{2Q} \end{aligned}$$

> Energy balance schematics for an accelerating structure

Common features:

Beam Loading term

- Beam Loading term: Decelerating gradient dependent on Intensity (i.e charge).
- **Quasi-static** approximation Admitted temporal dependency of phasors \rightarrow G depends on t

Expansion of the expressions found in:

[3] Leiss JE. *Beam Loading and Transient behavior in travelling wave electron linear accelerators*. In: PM Lapostolle, editor. Linear accelerators. Amsterdam, Holland: A.L. North Holland Publishing Company (1970). p. 147–72.

[4] Lunin A, Yakovlev V, Grudiev A. Analytical solutions for transient and steady-state beam loading in arbitrary travelling wave accelerating structures. Phys Rev Spec Top Accel Beams (2011) 14:05.

II. BL in RF-Track

- Particle tracking code developed at CERN
 - Allows integration of motion of arbitrary charged particles in user-provided 3D fieldmaps
 - C++; GSL & FFTW libraries; Octave and Python interface
- Beam Loading Module:

CSIC

Based on numerical resolution of Power-Diffusion PDEs (Finite-Difference Method)

[5] A. Latina. *RF-Track Reference Manual*. CERN, Geneva, Switzerland, June 2020 DOI: 10.5281/zenodo.3887085

II. Transient Gradient Reduction – CLIC AS

• Reliable gradient reduction calculation

CSIC

\mathbf{Units}	Value
$\Omega/{ m m}$	16178
-	5636
c/100	1.21
GHz	12.00
-	6
-	312
mm/c	0.3
А	1.20
ns	152.0
	Units Ω/m - c/100 GHz - mm/c A ns

> CLIC main Accelerating structure gradient details [4,6]

[4] Lunin A, Yakovlev V, Grudiev A. Analytical solutions for transient and steady-state beam loading in arbitrary travelling wave accelerating structures. Phys Rev Spec Top Accel Beams (2011) 14:05.

[6] Aicheler M, Burrows P, Draper M, Garvey T, Lebrun P, Peach K, et al. A Multi-TeV linear collider based on CLIC technology: CLIC Conceptual Design Report. Menlo Park, CA, United States: SLAC National Accelerator Lab (2014).

II. Tracking algorithm with BL

- 2 different strategies depending on particle v
 - **Ultrarelativistic** bunches:
 - Solve G prior to tracking
 - $E_z(z,t) = \operatorname{Re}\left[G(z,t)e^{j(k(z-z_{\mathrm{mean}})-\omega t)}\right]$
 - Apply $F_z = q E_z(z_{\text{part}}, t_{\text{part}})$

(Finite differences)

(Cubic interpolation)

- Relativistic bunches:

CSIC

- Intensity depends on particle's velocity: $\tilde{I}(z,t) = \beta_r(z,t) \frac{q_{\text{bunch}}}{T_{\text{DE}}}$
- Therefore, gradient reduction depends on instantaneous bunch info
- G is solved on the fly

[7] Olivares Herrador J, Latina A, Aksoy A, Fuster Martínez N, Gimeno B and Esperante D (2024), Implementation of the beam-loading effect in the tracking code RFtrack based on a power-diffusive model. Front. Phys. 12:1348042. doi: 10.3389/fphy.2024.1348042

- Transient tracking
 - **PETS**: Power Extraction and Transfer Structures. → **Deceleration** due to BL

- **Transient** tracking
 - **PETS**: Power Extraction and Transfer Structures. → **Deceleration** due to BL

- Transient tracking
 - **PETS**: Power Extraction and Transfer Structures. → **Deceleration** due to BL

- Transient tracking
 - **PETS**: Power Extraction and Transfer Structures. → **Deceleration** due to BL

- Transient tracking
 - **PETS**: Power Extraction and Transfer Structures. → **Deceleration** due to BL

• **Transient** tracking

CSIC

- **PETS**: Power Extraction and Transfer Structures. → **Deceleration** due to BL

[8] Erik Adli (2009). A Study of the Beam Physics in the CLIC Drive Beam Decelerator. PhD Thesis.

III. BL measurements at CLEAR

Magnitude	Units	Value	M	Iagnitude	Units
$r/Q_{\rm average}$	Ω/m	4400	γ	$\cdot/Q_{ m average}$	$\Omega/{ m m}$
$Q_{ m average}$	-	15000		Q_{average}	-
f_0 $$	GHz	3.00		f_0	GHz
f_0/f_b	-	2		f_0/f_b	-
$N_{ m bunches}$	-	150		$N_{\rm bunches}$	-
σ	mm/c	1.0		σ	mm/c

>CLEAR TW structures information

>	CLEAR	SW	photoinjector	information
---	-------	----	---------------	-------------

Value

3765

5920

3.00 $\mathbf{2}$ 1501.0

[9] CLEAR Official Website [Accessed October 2023]. https://clear.cern/content/beam-line-description

CSIC

III. BL in CLEAR photo-injector

• Train of **150 bunches** with variable charge (Q_{bunch}) per bunch; $f_b = f_{RF}/2$

(A) Beam Loading Energy Spread induced in a tra of 150 bunches as a function of charge (measurement at CLEAR) **(B)** Beam Loading Energy Spread induced in a train of 150 bunches as a function of charge (RF-Track)

III. BL measurements in VESPER (after TW + SW)

• Train of **50 bunches** with **variable charge** (Q_{bunch}) per bunch; $f_b = f_{RF}/2$

IV. BL compensation - Photocathode

- BL can be compensated with **early injection** of the particles ٠
 - **RF-Track** allows the simulation of this scenario _

IV. BL compensation in TW structures

• Latest feature: possibility to tune input power \rightarrow BL compensation

[4] Lunin A, Yakovlev V, Grudiev A. Analytical solutions for transient and steady-state beam loading in arbitrary travelling wave accelerating structures. Phys Rev Spec Top Accel Beams (2011) 14:05.

CSIC

IV. BL compensation in TW structures

• Latest feature: possibility to tune input power \rightarrow BL compensation

[4] Lunin A, Yakovlev V, Grudiev A. Analytical solutions for transient and steady-state beam loading in arbitrary travelling wave accelerating structures. Phys Rev Spec Top Accel Beams (2011) 14:05.

CSIC

V. CLIC Positron Source

Courtesy of Nafiseh Mesbah

- Both e- and e+ travel together through 11 TW structures (See Nafiseh's talk in CLIC Mini Week) ٠
 - Both BL contribution seem to cancel each other \rightarrow Bunch-to-bunch E, t spread is minimized _

> Positron bunches longitudinal phase-space for optimized phases by Yongke Zhao.

> Positron bunches longitudinal phase-space for optimized phases by Yongke Zhao with BLe+

> Positron bunches longitudinal phase-space for optimized phases by Yongke Zhao with both BL

Contact: nafiseh.mesbah@cern.ch

n=1

n=150

n=300

0.4 0.6

V. Conclusions

- Basic principles \rightarrow Understanding of power-diffusive model for BL
- Implementation in RF-Track with fast computational times
 - Orders of magnitude below EM solvers
- Consistent with experimental measurements @ CLEAR
- Bridges beam dynamics simulations with RF-BL compensation
- Potential:
 - Compact high-intensity linac for medical and industrial applications Neutron sources
 - Multi-species structures such as CLIC positron source

Thanks for your attention

Contact: Javier.olivares.herrador@cern.ch

BACK UP SLIDES

GUN: (Ez, φ) Calibration

- For a 50 pC bunch:
 - Collect (E_k , ϕ_k) measurements
 - Fit then to target function $F(E_z, \varphi)$
 - F: RF-Track calculation of E after gun.

Magnitude	\mathbf{Units}	Value
E_z^{\max}	MV/m	60.8 ± 9.8
r^2		0.94

> Results of the minimum square fitting with a test function computed with RF-Track.

GUN: Beam Loading Measurements

- 2) Divergent slope
 - Looking again at the BL equation ...

 $-\frac{\partial G}{\partial t} = \frac{\omega}{Q}\frac{G}{2} + \frac{\omega r_{\rm eff}I}{2Q} + \frac{G_{\rm init}\omega}{2Q}$

- ... the slope of the plot E vs Q depends on \mathbf{r}/\mathbf{Q} and \mathbf{Q}
- From design report: r/Q = ; Q0 = 14530;
- However, we learn that the Q governing the dynamics is

 $Q = (598 \pm 8) \cdot 10$

This is the loaded quality factor!

$$Q_l = \frac{Q_0}{1+\beta} = (598 \pm 8) \cdot 10 \implies \beta = 1.5$$

CLEAR – Injector BL

Train: 150 bunches; $f = f_{RF}/2$; $Q_{bunch} = 250 \text{ pC} - 1500 \text{ pC}$

CLEAR – Injector BL

- First consequence: Energy loss depending on Q
- Another consequence: Arrival time to TWS1
 - If all particles travel with same β , then the arrival time to TWS1 would be equally spaced. Ideally, it would be perfectly synchronized so that

$$t_{k} = \underbrace{\frac{4\pi k}{\omega}}_{\text{Injection time}} + \underbrace{\int_{0}^{L} \frac{\mathrm{d}z}{\beta(z)c}}_{\text{Flight time along gun}}; \ k = 0, .., N - 1 \implies \Delta t_{k} = \frac{4\pi}{\omega}$$

- However, particles have different β because of **Gradient reduction** \implies **Different spacing**!
- Definition: Bunch phase $\varphi_{\text{bunch},k} = \omega t_k \pmod{2\pi}$

CLEAR – Injector BL

Bunch phase distortion depends on Q

19.03.2024

CLEAR – TW structures

- Inhomogeneous $\varphi_{\text{bunch}} \implies$ Spoils train E homogeneity
 - t_k no longer synchronized with RF.

 $F_z \propto E_z \propto \cos\left(\varphi_{\text{bunch}} + \phi_{\text{RF}}\right)$

CLEAR – TWS1 BL

• BL @ GUN $\implies \phi_{\rm RF}$ affects Energy profile!

CLEAR – TW structure

• Beam Loading at GUN helps compensating overall Beam Loading

_