

AION-100 @ CERN: feasibility study for installation at the LHC point 4, and future activities towards realization

Sergio Calatroni on behalf of the Feasibility Study Group 20.09.2024

sics Beyond Colliders - Technology Working Group

Simple Example: Two Atomic Clocks

Simple Example: Two Atomic Clocks

Simple Example: Two Atomic Clocks

Long baseline atom interferometer

Motivation for atom interferometer

Unlocking the potential for observation of <u>Ultra-Light Dark Matter</u> and <u>Gravitational Waves</u> from cosmological and astrophysical sources in the unexplored mid-frequency band

Scope of the fea

- location always accessib
- Assess technical feasibil
- Based on AION-100 techr

Outcome:

- "A Long-Baseline Atom I
- CERN-PBC-REPORT-202

CERN-PBC Report-2023-002

A Long-Baseline Atom Interferometer at CERN: **Conceptual Feasibility Study**

Identify location for a ver G. Arduini^{1,*}, L. Badurina², K. Balazs¹, C. Baynham³, O. Buchmueller^{3,4,*}, M. Buzio¹, S. Calatroni^{1,*}, J.-P. Corso¹, J. Ellis^{1,2,*}, Ch. Gaignant¹, M. Guinchard¹, T. Hakulinen¹, R. Hobson³, A. Infantino¹, D. Lafarge¹, R. Langlois¹, C. Marcel¹, J. Mitchell⁵, M. Parodi¹, M. Pentella¹, D. Valuch¹, H. Vincke¹

> ¹ CERN, ² King's College London, ³ Imperial College London, ⁴ University of Oxford, ⁵ University of Cambridge

* Editors

Abstract

We present results from exploratory studies, supported by the Physics Beyond Colliders (PBC) Study Group, of the suitability of a CERN site and its infrastructure for hosting a vertical atom interferometer (AI) with a baseline of about 100 m. We first review the scientific motivations for such an experiment to search for ultralight dark matter and measure gravitational waves, and then outline the general technical requirements for such an atom interferometer, using the AION-100 project as an example. We present a possible CERN site in the PX46 access shaft to the Large Hadron Collider (LHC), including the motivations for this choice and a description of its infrastructure. We then assess its compliance with the technical requirements of such an experiment and what upgrades may be needed. We analyse issues related to the proximity of the LHC machine and its ancillary hardware and present a preliminary safety analysis and the required mitigation measures and infrastructure modifications. In conclusion, we identify primary cost drivers and describe constraints on the experimental installation and operation schedules arising from LHC operation. We find no technical obstacles: the CERN site is a very promising location for an AI experiment with a vertical baseline of about 100 m.

Geneva, Switzerland

March 30, 2023

m deep at CERN, in a

IC machine

Feasibility Study"

351946

TVLBAI workshop series launched

https://indico.cern.ch/event/1208783/

Mar 13 - 14, 2023 > CERN

Terrestrial Very-Long-Baseline Atom Interferometry

he event will take stock of the developing internationa ure LISA space mission, and offering unique sensitivity to

ent/1208783

Workshop Summary now published with more than 250 co-authors as Community Roadmap **AVS Quantum Science (Vol. 6, Issue 2)**

https://doi.org/10.1116/5.0185291

https://indico.cern.ch/event/1369392/ April 3-5, 2024 > Imperial College - London

Terrestrial Very-Long-Baseline Atom Interferometry

2nd WORKSHOP

ttps://indico.cern.ch/event/1369392

LHC Point 4

Selected location: PX46

Selected location: PX46

Views at the surface

View from below

Transport of LHC components and proposed layout

Evaluation of PX46 as suitable site for an Al Can the AI in PX46 be accessed at all times?

- Compatibility with technical requirements for an AI influence of the LHC
 - Vibrations, seismic noise and local geology
 - EM noise
 - Radiation protection
 - Fire safety
 - He release hazards
 - Access control
- Available infrastructure
 - Electrical supply, network, etc.
 - HVAC

Vibrations and seismic noise

RMS power spectral density (time block 64s, averaged over the worst day)

✓ Measured values within acceptable limits

Effect of local geology: gravity gradient noise

Seismic gravity gradient noise (GGN): seismic waves disturb local mass distribution, cause oscillating gravity gradient that is a noise background (especially important at lower frequencies)

Calculated using RMS spectral density of surface vertical displacement measurements, the shaded band corresponds to the difference between the minimum and maximum daily measurements. Compared with the New High and Low Noise Models (NHNM and NLNM: USGS seismic models for hypothetical quiet and noisy sites).

Power spectral density low-frequency magnetic field measurement

✓ Measured values within acceptable limits

Installation 2022 (thanks EN-MME, EN-ACE, EN-HE, EN-CV)

Effect of LHC magnets

CERN

Radiation protection

		Assuming 20% working time		
	Annual dose limit	Ambient dose equivalent rate		
Area	E [mSv]	$\dot{H}^{*}(10)$ [μ S	10) [μ Sv/h]	
	year	permanent occupancy	low occupancy	
Non-designated	1	0.5	2.5	
Supervised	6	3	15	

Beam loss in RUX45 with 0.8 m shielding in TX46

- No concern during normal LHC beam operations
- In case of beam loss, radiation levels remain within acceptable limits (supervised area)
- Thickness of shielding wall to be optimized

In case of a fire in UX45 (klystron gallery):

- Smoke detection -> Alarms -> Evacuation with elevator in ~2 min via top of PX46
- In case of systems failure: controlled descent in ~2 min to bottom of PX46 and exit via PM45 or PZ45

Elevator: from artist view to conceptual design

A design that complies with all requirements is technically feasible as demonstrated by an external consultant:

- Powered from electrical network
- Backup battery powered
- Controlled descent in case of battery failure

Helium release safety: LHC arcs

Helium release safety: RF cryomodules

- RF cryomodules contain 320 x 4 liters of liquid He; in case of release it is evacuated via PX46
- Flow restrained by the small openings (RF waveguides)
- 970 m³ of gas compared to 18000 m³ of the cavern (<~ 20%), oxygen deficiency hazard is limited
- Measured in 2023 (info T. Hakulinen) : no change in O₂ % in TU46 due to He release from RF cryomodules

Access control

End-of-zone door of the LHC Access Safety System (LASS), for emergency exit at the bottom of PX46 Red in color and including an emergency opening handle on both sides

YCPZ01 UA13

Standard LHC Access Control System (LACS) door. Probably a lightweight solution could be installed at the top platform of PX46, since access to the AI will NOT be an access to the LHC. Availability and use of oxygen-generating selfrescue masks to be assessed

PZ85

Technical requirements

Requirement	Laser Lab	Interferometry region	Side-arm (per side-arm)
Volume	Floor area $> 50 \mathrm{m}^2$	1 m ² cross-sectional area	$1 \text{ m} \times 1 \text{ m} \times 2 \text{ m}$
Mains power	$\sim 35 \text{kW}$ (three- and single-phase outlets)	O(100W) diagnostic and monitoring electronics	O(10kW)
Control cables	Ethernet, fibre, coaxial	Magnetic coils, diagnostic and monitoring electronics	optical fibres, coaxial, high-power steel-clad fibers
Temperature stability	22 °C w/ \pm 1 °C pk-pk	$< 1 ^{\circ} C h^{-1}$	Temperature controlled, NEMA rated enclosure, < 0.5°C pk-pk
Water cooling	30 kW cooling capacity	n/a	5 kW cooling capacity, $< \pm 1 ^{\circ}\text{C}$ stability
Laser safety	Engineering (enclosures, interlocks); admin (training); PPE (glasses)	Already safe (enclosed)	Engineering (enclosures); admin (training); PPE (glasses)
Gases	Helium, compressed air, Argon	n/a	Helium for commissioning
Cryogenics	n/a	n/a	n/a
Ventilation	Air-handling unit capable of temp. spec.	Air-flow to maintain temp. spec.	Air-flow to move 5 kW of heat
Access	Year-round (> 12 hrs/day)	Access for maintenance (more access during calibration and commissioning)	Year-round ~ 12 hrs/day (more R& D for fully autonomous atom sources)
Smoke detector	Yes	Yes	Yes
Oxygen depletion monitor	Yes	During maintenance	n/a
Hoisting equipment	n/a	Modular sections < 907 kg	n/a

PX46 - Existing conditions: electricity

- About 160 kW needed: interferometer +
 laser laboratory + elevator
- About 1.25 MVA available at the transformer in SX4 in front of a present consumption of 85 kVA
- As a consequence, no modifications of the electrical power distribution network are expected

New preliminary single line diagram of SX4, with the new feeder of EBD1/4X, the new switchboard EXD1/4X and its feeders in orange

PX46 - Existing conditions: HVAC

Ventilation

- Air extraction from the UX45 is done at the top of the cavern by unit located in TU46
- Extracted air is then directly supplied in PX46 (no ducts in PX46)
- In surface, a duct is connected to the cap to collect extracted air to main extraction unit in SX4
- Existing CV platform at 24m from the bottom of the shaft, openable inside from the TU46
- All ventilation units are stopped if a fire is detected

Cooling

- Cooling system will be located on the surface and
- Water will be distributed to each side-arm
- Distribution piping will be installed along the full height of the experiment

Courtesy of R. Langlois

Conclusions and perspectives

- No showstoppers identified for installing an AI at LHC Point 4
 - Environmental noise measurements comply with requirements of an AI
 - Safety assessed and potential hazards identified
 - Mitigation measures related to LHC environment identified (RP, access control, etc.)
 - HVAC, electricity and other relevant services are available
- Expected ~1.5 MCHF cost for making the site infrastructure available for an AI, granting an access 24h/24 for subsequent installation and running of the experiment

Item	Cost [kCHF]
Shielding	400
Lifting platform	400
Access, safety systems and monitoring	200
General services and utilities	500
Total	1500

Class 5 estimates

Conclusions and perspectives

- Next steps
 - Creation of an experim Interferometer

Memorandum of Understanding for the Terrestrial Very Long Baseline Atom Interferometer Study

THE INSTITUTES, LABORATORIES, UNIVERSITIES, FUNDING AGENCIES SIGNATORIES OF THIS MEMORANDUM OF UNDERSTANDING ("the Participants")

Whereas

The scientific community wishes to draft a framework for the development and realization of Terrestrial Very-Long-Baseline Atom Interferometry (TVLBAI) experiments, with a view to executing a Conceptual Design Study for a TVLBAI (the "TVLBAI Study"),

Signed by:

Long-Baseline Atom Interferometry (TVLBAI) Study	Nuclear Research (CERN)
Signed by:	DocuSigned by:
Oliver Buchmueller	Mike Lamont
9784927EEEBB4B6	3FE200FFB3CF46F
Prof. Oliver Buchmueller	Mike Lamont
TVLBAI Study Chair I	Director of CERN Accelerator and
	Technology Sector
9/18/2024 Date: Date	9/18/2024
Dute. Dute	·

ptual design study of an Atom

Signed to date by 11 Institutes, more to come

Conclusions and perspectives

- Next steps
 - Creation of an experimental collaboration aimed at performing the conceptual design study of an Atom
 Interferometer
 - Conceptual technical design, construction timeline and cost estimates for making PX46 available to the AI
 community for a future installation of an experiment
 - In particular -> Mandate received from Mike Lamont
 - Design of the shielding wall, in interaction between RP and CE with input from HE and AA
 - Access control and alarms design
 - Verification of CV needs (ventilation of the bottom of the shaft)
 - Assessment of immediate need of the elevator platform
 - Assess the time-frame required for detailed technical and execution design and for the construction and installation works: is LS3 a possible option?

CERN accelerator complex master schedule

home.cern

Imperial College London

Light vs. Cold Atoms: Atom Interferometry

What is an atom interferometer? Based on atom clock

2) At t = T, the wave packet is fully separated, and a mirror sequence reverses the momentum states of the two halves of the cloud.

1) The ultra-cold atom cloud is launched vertically. At t = 0, the first laser beam splitter sequence splits the cloud into a superposition of momentum states separated by nħk

The De Broglie waves interfere, and the pattern is extremely sensitive to the gravity g experienced by the atom clouds

Kovachy, Nature, 2015

Coupled atom sources have a large potential for measurement Gravitational Waves and Dark Matter

STANFORD UNIVERSITY